Ammonia-Powered Engines Pave Way for Cleaner, Efficient Travel

Sophia University

While the transportation sector has witnessed a dramatic shift toward electric vehicles (EVs), the idea of using hydrogen as a clean and efficient fuel for transportation has been explored for many decades. These vehicles emit water on combustion, and since they are based on the production of existing engine vehicles, they are expected to have a lower manufacturing carbon footprint than EVs. However, storing and transporting hydrogen requires high pressures and low temperatures, which are energy-intensive processes. To address this, ammonia has been considered as a potential carrier of hydrogen for fuel cells or combustion engines. But ammonia is a hard-to-burn fuel and requires mixing with gasoline for efficient combustion.

Since 2019, Professor Mitsuhisa Ichiyanagi from the Department of Engineering and Applied Sciences at the Faculty of Science and Technology at Sophia University, along with Emir Yilmaz and Takashi Suzuki, also from Sophia University, has been working to design engines where ammonia can be used as a standalone fuel. Their work focuses on intake port opening conditions that enhance the mixing of air with fuel inside the engine cylinder for a more efficient combustion. In a study published in the journal Energies on 17 December 2023, the researchers determine intake port opening conditions that would lead to swirling flow conditions within the cylinder of an engine.

"Airflow within cylinders profoundly affects combustion and emissions by influencing the air–fuel mixing phenomenon," says Prof. Ichiyanagi. "With the aim of burning only ammonia, we have basically investigated the relationship between the engine's intake system and the flow inside cylinders."

Swirling flow refers to a vortex-like pattern of air–fuel mixture entering the engine's cylinder. This is advantageous as it promotes better mixing of air and fuel, creating a more homogenous mixture, leading to improved combustion and reduced emissions. The researchers conducted their investigation in an optical single-cylinder diesel engine with a glass cylinder and piston. For air intake, the engine used conventional tangential and helical intake ports.

To visualize the air flows in the engine, the researchers introduced silica particles with diameters of 4.65 µm as tracers during the intake stroke and monitored their movement in the engine with a high-speed CMOS camera. Air entering through the helical port develops into swirling patterns, while air from the tangential port initially produces no vortical structure. However, when redirected by the cylinder walls, it eventually generates swirling structures.

In their earlier experiments, the researchers observed that airflow velocity remained relatively constant across various helical port openings. So, leaving the helical port completely open, they varied the opening of the tangential port to 0 %, 25%, 50%, 75%, and 100% to determine its effect on intake and in-cylinder flows during the intake and compression strokes.

The researchers noted the successful generation of swirl flows in the early stage of the compression stroke when the opening of the tangential port was more than 25%. The formation of swirl flows was observed to correlate with low variances of turbulent kinetic energy during the intake stroke and low variances of the swirl center position during the compression stroke. The observation of swirl flows in the cylinder opens the door to efficient ammonia combustion in the engine. The researchers intend to apply the findings from this study to investigate the combustion characteristics of an ammonia–gasoline mixture or only ammonia in the engine.

Driven mostly by EVs, the demand for lithium is expected to exceed 2.4 million metric tons by the 2030s, a significant increase from the 130,000 metric tons produced in 2022. According to the International Energy Agency, this could lead to potential lithium shortages as early as 2025. In such a situation, ammonia emerges as a promising alternative clean fuel.

Although there are challenges to overcome before ammonia-fueled vehicles become a reality, this research holds promise for achieving current and future decarbonization goals. "The development of ammonia-fueled engine vehicles is expected to not only reduce carbon dioxide emissions from engines but also contribute to realizing a hydrogen energy society," says Prof. Ichiyanagi.

Reference

Title of original paper:

Experimental Investigation of the In-Cylinder Flow of a Compression Ignition Optical Engine for Different Tangential Port Opening Areas

Journal:

Energies

DOI:

10.3390/en16248110

Authors:

Mitsuhisa Ichiyanagi 1, *, Emir Yilmaz 1, Kohei Hamada 2, Taiga Hara 2, Willyanto Anggono 3, and Takashi Suzuki 1

Affiliations:

1 Department of Engineering and Applied Sciences, Sophia University

2 Graduate School of Science and Technology, Sophia University

3 Mechanical Engineering Department, Petra Christian University

About Sophia University

Established as a private Jesuit affiliated university in 1913, Sophia University is one of the most prestigious universities located in the heart of Tokyo, Japan. Imparting education through 29 departments in 9 faculties and 25 majors in 10 graduate schools, Sophia hosts more than 13,000 students from around the world.

Conceived with the spirit of "For Others, With Others," Sophia University truly values internationality and neighborliness, and believes in education and research that go beyond national, linguistic, and academic boundaries. Sophia emphasizes on the need for multidisciplinary and fusion research to find solutions for the most pressing global issues like climate change, poverty, conflict, and violence. Over the course of the last century, Sophia has made dedicated efforts to hone future-ready graduates who can contribute their talents and learnings for the benefit of others, and pave the way for a sustainable future while "Bringing the World Together."

Website: https://www.sophia.ac.jp/eng/

About Professor Mitsuhisa Ichiyanagi from Sophia University

Professor Mitsuhisa Ichiyanagi graduated from the Department of System Design Engineering, Faculty of Science and Technology, Keio University, and received his Ph.D. in Engineering after completing the doctoral program at the university's Graduate School of Science and Technology. Took on several positions—such as project researcher at the University of Tokyo's Graduate School of Engineering as well as assistant professor and associate professor at the Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University—before assuming current position in 2022.

Funding information

This research was funded by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (No. 19K04244).

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.