
The The Stratospheric Projectile Entry Experiment on Dynamics (SPEED), a two-stage stratospheric drop test architecture, is currently under development to bridge the state-of-the-art gap that many NASA flagship missions require to reduce system risk and enable more optimized designs via margin reduction. To do this, a two-stage vehicle will drop from a high-altitude balloon and use the first stage (an LV-Haack cone aeroshell) to accelerate the sub-scale test model to supersonic conditions. The onboard avionics will then release the test model into freestream flow at the proper altitude in Earth's atmosphere for dynamic Mach scaling to the full-scale flight trajectory. SPEED leverages low-cost methods of manufacturing such as 3D printing and laser/water-jet cutting to enable 8 or more two-stage vehicles to be dropped in a single test, making the science-to-dollar density much higher than any current ground-test facility NASA has at its disposal. The goal is to develop a robust ejection system that can reliably introduce the test models into supersonic flow with a tight variance on initial condition perturbation. The separation system must be capable of handling a range of initial angle-of-attacks, keep the test model secure in the first stage during take-off and descent, and eject the test model in such a way that it does not linger behind the first stage and be affected by the resulting wake. As current ejection system designs are conceptual, complex, and untested, NASA is looking for alternative ideas that can be incorporated into the design of their next iteration of SPEED flight vehicles to increase system reliability. We are challenging the public to design innovative concepts for a separation mechanism that can be used to assess NASA and commercial reentry vehicle stability.
Award: $7,000 in total prizes
Open Date: July 14, 2025
Close Date: September 8, 2025