NASA, Northrop Grumman Launch Medical, Tech Studies

NASA and Northrop Grumman are preparing to send the company's next cargo mission to the International Space Station, flying research to support Artemis missions to the Moon and human exploration of Mars and beyond, while improving life on Earth. SpaceX's Falcon 9 rocket will launch Northrop Grumman's 23rd commercial resupply services mission to the orbiting laboratory.

The investigations aboard the Cygnus spacecraft aim to refine semiconductor crystals for next-generation technologies, reduce harmful microbes, improve medication production, and manage fuel pressure.

NASA, Northrop Grumman, and SpaceX are targeting launch in mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Read about some of the investigations traveling to the space station:

Better semiconductor crystals

Optical micrograph of a semiconductor composite wafer with embedded semimetal phases extracted from a space grown crystal in the SUBSA facility during Mission 1
United Semiconductors LLC

Researchers are continuing to fine-tune in-space production of semiconductor crystals, which are critical for modern devices like cellphones and computers.

The space station's microgravity environment could enable large-scale manufacturing of complex materials, and leveraging the orbiting platform for crystal production is expected to lead to next-generation semiconductor technologies with higher performance, chip yield, and reliability.

"Semiconductor devices fabricated using crystals from a previous mission demonstrated performance gain by a factor of two and device yield enhanced by a factor of 10 compared to Earth-based counterparts," said Partha S. Dutta, principal investigator, United Semiconductors LLC in Los Alamitos, California.

Dutta highlighted that three independent parties validated microgravity's benefits for growing semiconductor crystals and that the commercial value of microgravity-enhanced crystals could be worth more than $1 million per kilogram (2.2 pounds).

Space-manufactured crystals could help meet the need for radiation-hardened, low-power, high-speed electronics and sensors for space systems. They also could provide reduced power use, increased speed, and improved safety. The technology also has ground applications, including electric vehicles, waste heat recovery, and medical tools.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.