Optical chip protects quantum technology from errors

New quantum photonic processor uses entanglement to protect itself from errors. The feat is published in Nature Physics.

In today’s digital infrastructure, the data-bits we use to send and process information can either be 0 or 1. Being able to correct possible errors that may occur in computations using these bits is a vital part of information processing and communication systems. But a quantum computer uses quantum bits, which can be a kind of mixture of 0 and 1, known as quantum super-position. This mixture is vital to their power – but it makes error correction far more complicated.

Researchers from DTU Fotonik have co-created the largest and most complex photonic quantum information processor to date – on a microchip. It uses single particles of light as its quantum bits, and demonstrates a variety of error-correction protocols with photonic quantum bits for the first time.

“We made a new optical microchip that processes quantum information in such a way that it can protect itself from errors using entanglement. We used a novel design to implement error correction schemes, and verified that they work effectively on our photonic platform,” says Jeremy Adcock, postdoc at DTU Fotonik and co-author of the Nature Physics paper.

/Public Release. This material comes from the originating organization/author(s)and may be of a point-in-time nature, edited for clarity, style and length. The views and opinions expressed are those of the author(s).View in full here.