Primal-Dual Approximation Algorithm Tackles K-Prize Vertex Cover Issue

Higher Education Press

The k-prize-collecting minimum vertex cover problem with submodular penalties (k-PCVCS) is a generalization of the minimum vertex cover problem, which is one of the most important and fundamental problems in graph theory and combinatorial optimization. This problem is to select a vertex set that covers at least k edges, and the objective is to minimize the total cost of the vertices in the selected set plus the penalty of the uncovered edge set, where the penalty is determined by a submodular function.

To solve the k- PCVCS, Xiaofei LIU et al. published their new research in Frontiers of Computer Science (2023, Vol. 17, Issue 3) co-published by Higher Education Press and Springer·Nature.

In the research, they first proved that Algorithm 1 can be implemented in O(n16r+n17), where r is the time for one function evaluation. Then, they proved that Algorithm 2 is a 3-approximation algorithm for the k-PCVCS. Specifically, if the penalty function is linear, Algorithm 2 is a 2-approximation algorithm.

Future work can focus on studying the version with general penalties, such as, subadditive or supermodular penalties. Meanwhile, the k-PCVCS with hard capacities deserves to be explored, in which each vertex v is covered at most Cv edges.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.