A new theory for Semiconductors made of nanocrystals

Researchers at ETH have provided the first theoretical explanation for how electrical current is conducted in semiconductors made of nanocrystals. In the future, this could lead to the development of new sensors, lasers or LEDs for TV screens.

Tightly packed crystals in a nanocrystal semiconductor: the model developed by ETH researchers describes every single atom. (Visualisation: ETH Zurich / Nature Communications)

A few years ago, we were introduced to TV screens featuring QLED technology that produces brilliant colours. The "Q" here stands for "quantum dot". Quantum dots are crystals of a semiconductor material only a few nanometres in size that consist of a couple of thousand atoms. Those nanocrystals are so tiny that the electrons in them can only take on certain well-defined quantum mechanical energy levels. As a consequence, when quantum dots are illuminated by the backlight of a TV, light of a particular colour is emitted by quantum jumps between those levels.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.