Computing-Assessing veteran suicide risk

  • Project bridges compute staff, resources at ORNL and VA health data to speed suicide risk screening for US veterans

    ORNL’s project for the Department of Veterans Affairs bridges computing prowess and VA health data to speed up suicide risk screenings for United States veterans. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

  • ORNL's Jeremy Cohen, Edmon Begoli, and Josh Arnold discuss their work related to the REACH VET project. Image Credit: Carlos Jones, ORNL

    Oak Ridge National Laboratory’s Jeremy Cohen, Edmon Begoli and Joshua Arnold discuss their work on a collaborative project to more quickly screen Department of Veterans Affairs’ health data and identify those who may be at risk. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

  • ORNL's Joshua Arnold worked on the VA's medication possession ratio algorithm to cut its processing time down to minutes from what would have been 75 hours. Image Credit: Carlos Jones, ORNL

    Oak Ridge National Laboratory’s Joshua Arnold worked on the U.S. Veterans Administration’s medication possession ratio algorithm to cut its processing time down to minutes from what would have taken 75 hours. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

  • Project bridges compute staff, resources at ORNL and VA health data to speed suicide risk screening for US veterans

    ORNL’s project for the Department of Veterans Affairs bridges computing prowess and VA health data to speed up suicide risk screenings for United States veterans. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

  • ORNL's Jeremy Cohen, Edmon Begoli, and Josh Arnold discuss their work related to the REACH VET project. Image Credit: Carlos Jones, ORNL

    Oak Ridge National Laboratory’s Jeremy Cohen, Edmon Begoli and Joshua Arnold discuss their work on a collaborative project to more quickly screen Department of Veterans Affairs’ health data and identify those who may be at risk. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

  • ORNL's Joshua Arnold worked on the VA's medication possession ratio algorithm to cut its processing time down to minutes from what would have been 75 hours. Image Credit: Carlos Jones, ORNL

    Oak Ridge National Laboratory’s Joshua Arnold worked on the U.S. Veterans Administration’s medication possession ratio algorithm to cut its processing time down to minutes from what would have taken 75 hours. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In collaboration with the Department of Veterans Affairs, a team at Oak Ridge National Laboratory has expanded a VA-developed predictive computing model to identify veterans at risk of suicide and sped it up to run 300 times faster, a gain that could profoundly affect the VA’s ability to reach susceptible veterans quickly. The model, called the medication possession ratio algorithm, creates individualized summaries of veterans’ medication patterns. It helps clinicians pinpoint veterans with inconsistent medication usage who may have a higher risk of attempting suicide. With the accelerated model, “we can observe and reach a much larger population that’s potentially at risk-and look at even more risk factors,” ORNL’s Edmon Begoli said. The sped-up version of the model can assess the behavior patterns of nine million veterans in only 15 minutes. “The potential to provide far greater predictive services is there,” he added.

Full story here

/Public Release. The material in this public release comes from the originating organization and may be of a point-in-time nature, edited for clarity, style and length. View in full here.