Novel Copper Gas Penetration Electrode Can Efficiently Reduce CO2 to Multicarbon Products

Chinese Academy of Sciences

Electrochemical conversion of CO2 into value-added chemical fuels driven by renewable electrical energy has twofold roles in reducing net CO2 emission and in addressing energy consumption. However, the current density of CO2 to multicarbon products remains a challenge for sustained industrial-scale implementation.

Recently, a research team from the Shanghai Advanced Research Institute of the Chinese Academy of Sciences reported a hierarchical micro/nanostructured Cu(100)-rich hollow-fiber gas penetration electrode (GPE) for electrochemical reduction of CO2 to multicarbon products under ampere level current density. The electrode broke through the bottleneck of low CO2 solubility limit.
The results were published in Energy & Environmental Science on Nov. 2.
The Cu GPE is composed only of metallic copper for electrochemical CO2 reduction reaction to C2+ products. It reduced CO2 to C2+ products with a faradaic efficiency of 62.8% and a current density of 2.3 A cm-2 in 0.5 M KHCO3 solution at -1.94 V, approximating to or even outperforming state-of-the-art Cu-based catalysts.
Electrochemical results showed that optimized mass transfer and enhanced three-phase interface reaction synergistically promoted CO2 activation and reduction kinetics. Theoretical calculations further suggested that the Cu(100) facet of Cu GPE favored CO adsorption and dimerization, thus enhancing its catalytic activity.
/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.