Polyploidy Senescence Tied to Aging, Repair, Cancer

Impact Journals LLC

"Our work highlights the need to study polyploidy and senescence in concert to understand their roles in aging, cancer, and therapeutic resistance."

BUFFALO, NY — February 18, 2026 — A new editorial was published in Volume 18 of Aging-US on February 8, 2026, titled " Polyploidy-induced senescence: Linking development, differentiation, repair, and (possibly) cancer? "

In this editorial, Iman M. Al-Naggar of the University of Connecticut School of Medicine , UConn Health , and the University of Connecticut Center on Aging , with George A. Kuchel of the University of Connecticut Center on Aging , examines the biological and clinical significance of polyploidy-induced senescence. The authors discuss how this process may contribute to normal tissue development and long-term repair, while also influencing cancer risk. Their perspective centers on the bladder and outlines how aging-related cellular changes may shape tumor initiation.

Aging remains the strongest risk factor for bladder cancer, which is predominantly of urothelial origin. Cellular senescence is defined as a stable growth arrest in which cells remain metabolically active but no longer divide. Polyploidy refers to cells that contain extra copies of their genome. Although polyploidy is frequently associated with cancer, it also occurs in several healthy tissues as part of normal development and adaptation to stress. The editorial highlights increasing evidence that polyploidy and senescence can function together as a coordinated biological program.

The authors focus on bladder umbrella cells, which form the barrier between urine and the bloodstream. In mice, these cells naturally become polyploid early in life and display markers of senescence across the lifespan. Rather than representing dysfunction, this state may help maintain tissue architecture, reinforce barrier integrity, and support resistance to environmental stress. In this context, polyploidy-induced senescence may act as a differentiation program that preserves organ structure.

"Polyploidization and senescence may be interrelated stress responses, yet they have been studied mostly in isolation."

However, this protective mechanism may become unstable. Polyploidy-induced senescence depends on intact tumor suppressor pathways, including regulators such as p16. If these safeguards are lost through mutation, deletion, or epigenetic silencing, polyploid senescent cells may escape growth arrest. Re-entry into the cell cycle under these conditions may promote chromosomal instability and aneuploidy, increasing the likelihood of malignant transformation. The authors propose that a subset of bladder cancers may arise from polyploid umbrella cells that have bypassed this senescent barrier.

The editorial also discusses implications for cancer therapy. Many anticancer treatments induce senescence and polyploidization in tumor cells. Although this approach can initially suppress proliferation, some polyploid cancer cells may later adapt, reduce their ploidy, and resume division, contributing to relapse and treatment resistance. Understanding how polyploidy and senescence interact may therefore inform therapeutic strategies.

Overall, the authors emphasize the need to study polyploidy and senescence together rather than in isolation. Integrating ploidy assessment into large-scale mapping efforts of senescent cells may improve insight into aging biology, tumor initiation, and resistance to therapy.

Paper DOI: https://doi.org/10.18632/aging.206355

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.