Researchers Develop Novel Near-ultraviolet LED-excitable Near-infrared Emitters

Chinese Academy of Sciences

All-inorganic lead-free perovskite-derivative metal halides are promising in optoelectronics. However, it remains challenging to realize efficient near-infrared (NIR) luminescence in these materials.

A research group led by Prof. CHEN Xueyuan from Fujian Institute of Research on the Structure of Matter of the Chinese Academy of Sciences (CAS) developed novel near-ultraviolet (NUV) light-emitting diode (LED)-excitable NIR emitters based on efficient energy transfer from Te4+ to Ln3+ (Ln = Er, Nd, and Yb) in vacancy-ordered double perovskite Cs2ZrCl6 phosphors.

The study was published in Angewandte Chemie International Edition.

Lanthanide (Ln3+) doping may endow the materials with NIR emission, but is limited by the small absorption coefficient of Ln3+ due to the parity-forbidden transitions within the 4fN configurations.

The researchers proposed a strategy via Te4+/Ln3+ (Ln=Er, Nd, and Yb) co-doping to achieve efficient NIR emission in perovskite-derivative Cs2ZrCl6 microcrystals (MCs).

Through sensitization by the spin-orbital allowed 1S03P1 transition of Te4+, the researchers achieved intense and multi-wavelength NIR luminescence originating from the 4f → 4f transitions of Er3+, Nd3+, and Yb3+.

Besides, the researchers demonstrated the excellent air-, structure-, and photo-stability of these Te4+/Ln3+ co-doped Cs2ZrCl6 and revealed their potentials as vis/NIR dual-emitters for applications in NUV-converted NIR-LEDs.

These findings provide an approach to achieve efficient NIR emission in lead-free metal halides through ns2-metal and lanthanide ion co-doping.

Schematic of efficient NIR luminescence in Te4+/Ln3+ co-doped Cs2ZrCl6 microcrystals (Image by Prof. CHEN's group)
/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.