Fertilizer Ingredient Boosts Plant Health: Study

Massachusetts Institute of Technology

Lanthanides are a class of rare earth elements that in many countries are added to fertilizer as micronutrients to stimulate plant growth. But little is known about how they are absorbed by plants or influence photosynthesis, potentially leaving their benefits untapped.

Now, researchers from MIT have shed light on how lanthanides move through and operate within plants. These insights could help farmers optimize their use to grow some of the world's most popular crops.

Published today in the Journal of the American Chemical Society, the study shows that a single nanoscale dose of lanthanides applied to seeds can make some of the world's most common crops more resilient to UV stress. The researchers also uncovered the chemical processes by which lanthanides interact with the chlorophyll pigments that drive photosynthesis, showing that different lanthanide elements strengthen chlorophyll by replacing the magnesium at its center.

"This is a first step to better understand how these elements work in plants, and to provide an example of how they could be better delivered to plants, compared to simply applying them in the soil," says Associate Professor Benedetto Marelli, who conducted the research with postdoc Giorgio Rizzo. "This is the first example of a thorough study showing the effects of lanthanides on chlorophyll, and their beneficial effects to protect plants from UV stress."

Inside plant connections

Certain lanthanides are used as contrast agents in MRI and for applications including light-emitting diodes, solar cells, and lasers. Over the last 50 years, lanthanides have become increasingly used in agriculture to enhance crop yields, with China alone applying lanthanide-based fertilizers to nearly 4 million hectares of land each year.

"Lanthanides have been considered for a long time to be biologically irrelevant, but that's changed in agriculture, especially in China," says Rizzo, the paper's first author. "But we largely don't know how lanthanides work to benefit plants - nor do we understand their uptake mechanisms from plant tissues."

Recent studies have shown that low concentrations of lanthanides can promote plant growth, root elongation, hormone synthesis, and stress tolerance, but higher doses can cause harm to plants. Striking the right balance has been hard because of our lack of understanding around how lanthanides are absorbed by plants or how they interact with root soil.

For the study, the researchers leveraged seed coating and treatment technologies they previously developed to investigate the way the plant pigment chlorophyll interacts with lanthanides, both inside and outside of plants. Up until now, researchers haven't been sure whether chlorophyll interacts with lanthanide ions at all.

Chlorophyll drives photosynthesis, but the pigments lose their ability to efficiently absorb light when the magnesium ion at their core is removed. The researchers discovered that lanthanides can fill that void, helping chlorophyll pigments partially recover some of their optical properties in a process known as re-greening.

"We found that lanthanides can boost several parameters of plant health," Marelli says. "They mostly accumulate in the roots, but a small amount also makes its way to the leaves, and some of the new chlorophyll molecules made in leaves have lanthanides incorporated in their structure."

This study also offers the first experimental evidence that lanthanides can increase plant resilience to UV stress, something the researchers say was completely unexpected.

"Chlorophylls are very sensitive pigments," Rizzo says. "They can convert light to energy in plants, but when they are isolated from the cell structure, they rapidly hydrolyze and degrade. However, in the form with lanthanides at their center, they are pretty stable, even after extracting them from plant cells."

The researchers, using different spectroscopic techniques, found the benefits held across a range of staple crops, including chickpea, barley, corn, and soybeans.

The findings could be used to boost crop yield and increase the resilience of some of the world's most popular crops to extreme weather.

"As we move into an environment where extreme heat and extreme climate events are more common, and particularly where we can have prolonged periods of sun in the field, we want to provide new ways to protect our plants," Marelli says. "There are existing agrochemicals that can be applied to leaves for protecting plants from stressors such as UV, but they can be toxic, increase microplastics, and can require multiple applications. This could be a complementary way to protect plants from UV stress."

Identifying new applications

The researchers also found that larger lanthanide elements like lanthanum were more effective at strengthening chlorophyll pigments than smaller ones. Lanthanum is considered a low-value byproduct of rare earths mining, and can become a burden to the rare earth element (REE) supply chain due to the need to separate it from more desirable rare earths. Increasing the demand for lanthanum could diversify the economics of REEs and improve the stability of their supply chain, the scientists suggest.

"This study shows what we could do with these lower-value metals," Marelli says. "We know lanthanides are extremely useful in electronics, magnets, and energy. In the U.S., there's a big push to recycle them. That's why for the plant studies, we focused on lanthanum, being the most abundant, cheapest lanthanide ion."

Moving forward, the team plans to explore how lanthanides work with other biological molecules, including proteins in the human body.

In agriculture, the team hopes to scale up its research to include field and greenhouse studies to continue testing the results of UV resilience on different crop types and in experimental farm conditions.

"Lanthanides are already widely used in agriculture," Rizzo says. "We hope this study provides evidence that allows more conscious use of them and also a new way to apply them through seed treatments."

The research was supported by the MIT Climate Grand Challenge and the Office for Naval Research.

/University Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.