<(From Left) Donghyoung Han, CTO of GraphAI Co, Ph.D candidate Jeongmin Bae from KAIST, Professor Min-soo Kim from KAIST>
Alongside text-based large language models (LLMs) including ChatGPT, in industrial fields, GNN (Graph Neural Network)-based graph AI models that analyze unstructured data such as financial transactions, stocks, social media, and patient records in graph form are being actively used. However, there is a limitation in that full graph learning—training the entire graph at once—requires massive memory and GPU servers. A KAIST research team has succeeded in developing the world's highest-performance software technology that can train large-scale GNN models at maximum speed using only a single GPU server.
KAIST (President Kwang Hyung Lee) announced on the 13th that the research team led by Professor Min-Soo Kim of the School of Computing has developed "FlexGNN," a GNN system that, unlike existing methods using multiple GPU servers, can quickly train and infer large-scale full-graph AI models on a single GPU server. FlexGNN improves training speed by up to 95 times compared to existing technologies.
Recently, in various fields such as climate, finance, medicine, pharmaceuticals, manufacturing, and distribution, there has been a growing number of cases where data is converted into graph form, consisting of nodes and edges, for analysis and prediction.
While the full graph approach, which uses the entire graph for training, achieves higher accuracy, it has the drawback of frequently running out of memory due to the generation of massive intermediate data during training, as well as prolonged training times caused by data communication between multiple servers.
To overcome these problems, FlexGNN performs optimal AI model training on a single GPU server by utilizing SSDs (solid-state drives) and main memory instead of multiple GPU servers.
<Figure (a): This illustrates the typical execution flow of a conventional full-graph GNN training system. All intermediate data generated during training are retained in GPU memory, and computations are performed sequentially without data movement or memory optimization. Consequently, if the GPU memory capacity is exceeded, training becomes infeasible. Additionally, inter-GPU data exchange relies solely on a fixed method (X_rigid), limiting performance and scalability. Figure (b): This depicts an example of the execution flow based on the optimized training execution plan generated by FlexGNN. For each intermediate data, strategies such as retention, offloading, or recomputation are selectively applied. Depending on resource constraints and data size, an appropriate inter-GPU exchange method—either GPU-to-GPU (G2G) or GPU-to-Host (G2H)—is adaptively chosen by the exchange operator (X_adapt). Furthermore, offloading and reloading operations are scheduled to overlap as much as possible with computation, maximizing compute-data movement parallelism. The adaptive exchange operator and various data offloading and reloading operators (R, O) within the figure demonstrate FlexGNN's ability to flexibly control intermediate data management and inter-GPU exchange strategies based on the training execution plan.>
Particularly, through AI query optimization training—which optimizes the quality of database systems—the team developed a new training optimization technology that calculates model parameters, training data, and intermediate data between GPU, main memory, and SSD layers at the optimal timing and method.
As a result, FlexGNN flexibly generates optimal training execution plans according to available resources such as data size, model scale, and GPU memory, thereby achieving high resource efficiency and training speed.
Consequently, it became possible to train GNN models on data far exceeding main memory capacity, and training could be up to 95 times faster even on a single GPU server. In particular, the realization of full-graph AI, capable of more precise analysis than supercomputers in applications such as climate prediction, has become a reality.
Professor Min-Soo Kim of KAIST stated, "As full-graph GNN models are actively used to solve complex problems such as weather prediction and new material discovery, the importance of related technologies is increasing." He added that "since FlexGNN has dramatically solved the longstanding problems of training scale and speed in graph AI models, we expect it to be widely used in various industries."
In this research, Jeongmin Bae, a doctoral student in the School of Computing at KAIST, participated as the first author, Donghyoung Han, CTO of GraphAI Co. (founded by Professor Kim) participated as the second author, and Professor Kim served as the corresponding author.
The research results were presented on August 5 at ACM KDD, a world-renowned data mining conference. The FlexGNN technology is also planned to be applied to Grapheye's graph database solution, GraphOn.
● Paper title: FlexGNN: A High-Performance, Large-Scale Full-Graph GNN System with Best-Effort Training Plan Optimization
● DOI: https://doi.org/10.1145/3711896.3736964
This research was supported by the IITP SW Star Lab and IITP-ITRC of the Ministry of Science and ICT, as well as the mid-level project program of the National Research Foundation of Korea.