Scientists develop gel that delivers drugs directly to diseased joints

Discovery could revolutionize osteoarthritis treatment

joint problems abstract 3d illustration

A new protein-based gel could introduce a new class of biomaterials.

Osteoarthritis (OA) is a progressive condition affecting the lives of more than 32 million Americans. Post-traumatic osteoarthritis (PTOA), a major subset of osteoarthritis that comprises 10% of diagnoses and disproportionally affects injured military personnel, has no effective therapeutic protocols that slow or stop the progression except for over-the-counter analgesics. Post-traumatic osteoarthritis leads to articular cartilage damage and results in more than $3 billion in health care costs each year.

U.S. National Science Foundation-funded researchers based at New York University identified the molecular mechanism and therapeutic payload for delivering pharmacologic treatment directly to affected joints, effectively halting the onset and progression of post-traumatic osteoarthritis. The team published its findings in Biomaterials.

The researchers combined compounds to develop a porous gel that can reach and envelop affected joints, reduce inflammation and induce regeneration. The substance, referred to as E5C, is a protein-based gel that contains native, not synthetic, cartilage components that are nontoxic and biodegradable. The properties of E5C make it a viable candidate for injectable biomaterials.

"We have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics in OA," said researcher and co-author Jin Kim Montclare.

The researchers are planning subsequent studies to determine the efficacy of higher doses of Atsttrin in the E5C gel for preventive and therapeutic applications.

Guebre Tessema, a program director in NSF's Division of Materials Research, added, "Critical information about the topography of biomaterials was obtained using an NSF-funded scanning electron microscope. The result is a clear demonstration of the vital impact NSF-funded instrumentation has on research."

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.