TurboID Reveals New Meiotic Proteins in Arabidopsis thaliana

Leibniz Institute of Plant Genetics and Crop Plant Research

During meiosis, reshuffling of genetic information between homologous chromosomes through meiotic recombination creates variable gametes and hence genetic variation in offsprings. Meiotic recombination occurs in the context of the meiotic chromosome axis, a proteinaceous structure along which sister chromatids are arranged in a loop base array during prophase I. Data across organisms suggests meiotic chromosome axis serving as a scaffold for meiotic recombination.

In the model plant A. thaliana, the axis associated proteins ASY1 and ASY3 are critical for synapsis and meiotic recombination. "Due to the key role of axis proteins such as ASY1 and ASY3 for meiotic fidelity including frequency and distribution of crossovers, further insights into the composition and regulation of plant meiotic chromosome axes are of interest", says Dr. Stefan Heckmann, head of IPK's independent research group "Meiosis". However, plant proteomic studies aiming to dissect the composition and regulation of meiotic processes including the chromosome axes are hampered by a limited number of meiotic cells being embedded in floral organs.

More recently proximity-dependent biotin identification (BioID) enabled the identification of proximate protein "interactomes". BioID is based on the fusion of a protein of interest to a promiscuous biotin ligase that catalyzes biotinylation of proteins in proximity. "We apply an improved BioID version, termed TbID, for proximity labeling of meiotic chromosome axis. We fused TbID to axis-associated proteins ASY1 and ASY3 to identify their proximate "interactomes" in A. thaliana", says Dr. Stefan Heckmann. 39 ASY1 and/or ASY3 proximate candidates were identified. Besides known meiotic chromosome axis-related proteins, also novel proteins that play a role during meiosis were found.

"The successful application of TbID in meiotic cells suggests that the employed method might be broadly applicable for rare cell types", says Dr. Chao Feng, first author of the study. "We envision that the data will foster future research on identified candidate proteins and that TbID could be used for the identification of more yet unknown meiotic proteins or modifications."

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.