Chandra Uncovers Star's Pre-Explosion Turmoil

This graphic features data from NASA's Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star's interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.
X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk

The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA's Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.

Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star's interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.

Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.

"It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting," said Toshiki Sato of Meiji University in Japan who led the study. "Now we've taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary."

As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements - extending all the way down to the center of the star.

Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.

The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.

"Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon," said co-author Kai Matsunaga of Kyoto University in Japan. "This is a violent event where the barrier between these two layers disappears."

This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A's supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon.

The survival of these regions not only provides critical evidence for the star's upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.

There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.

Finally, the strong turbulent flows created by the star's internal changes may have promoted the development of the supernova blast wave, facilitating the star's explosion.

"Perhaps the most important effect of this change in the star's structure is that it may have helped trigger the explosion itself," said co-author Hiroyuki Uchida, also of Kyoto University. "Such final internal activity of a star may change its fate-whether it will shine as a supernova or not."

These results have been published in the latest issue of The Astrophysical Journal and are available online.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.