Chemobiological Platform Enables Renewable Conversion Of Sugars Into Core Aromatic Hydrocarbons Of Petroleum

The Korea Advanced Institute of Science and Technology (KAIST)

With growing concerns over fossil fuel depletion and the environmental impacts of petrochemical production, scientists are actively exploring renewable strategies to produce essential industrial chemicals. A collaborative research team—led by Distinguished Professor Sang Yup Lee, Senior Vice President for Research, from the Department of Chemical and Biomolecular Engineering, together with Professor Sunkyu Han from the Department of Chemistry at the Korea Advanced Institute of Science and Technology (KAIST)—has developed an integrated chemobiological platform that converts renewable carbon sources such as glucose and glycerol into oxygenated precursors, which are subsequently deoxygenated in the same solvent system to yield benzene, toluene, ethylbenzene, and p-xylene (BTEX), which are fundamental aromatic hydrocarbons used in fuels, polymers, and consumer products.

From Sugars to Aromatic Hydrocarbons of Petroleum

The researchers designed four metabolically engineered strains of Escherichia coli, each programmed to produce a specific oxygenated precursor—phenol, benzyl alcohol, 2-phenylethanol, or 2,5-xylenol. These intermediates are generated through tailored genetic modifications, such as deletion of feedback-regulated enzymes, overexpression of pathway-specific genes, and introduction of heterologous enzymes to expand metabolic capabilities.

During fermentation, the products were continuously extracted into the organic solvent isopropyl myristate (IPM). Acting as a dual-function solvent, IPM not only mitigated the toxic effects of aromatic compounds on cell growth but also served directly as the reaction medium for downstream chemical upgrading. By eliminating the need for intermediate purification, solvent exchange, or distillation, this solvent-integrated system streamlined the conversion of renewable feedstocks into valuable aromatics.

Overcoming Chemical Barriers in An Unconventional Solvent

A central innovation of this work lies in adapting chemical deoxygenation reactions to function efficiently within IPM—a solvent rarely used in organic synthesis. Traditional catalysts and reagents often proved ineffective under these conditions due to solubility limitations or incompatibility with biologically derived impurities.

Through systematic optimization, the team established mild and selective catalytic strategies compatible with IPM. For example, phenol was successfully deoxygenated to benzene in up to 85% yield using a palladium-based catalytic system, while benzyl alcohol was efficiently converted to toluene after activated charcoal pretreatment of the IPM extract. More challenging transformations, such as converting 2-phenylethanol to ethylbenzene, were achieved through a mesylation–reduction sequence adapted to the IPM phase. Likewise, 2,5-xylenol derived from glycerol was converted to p-xylene in 62% yield via a two-step reaction, completing the renewable synthesis of the full BTEX spectrum.

A Sustainable, Modular Framework

Beyond producing BTEX, the study establishes a generalizable framework for integrating microbial biosynthesis with chemical transformations in a continuous solvent environment. This modular approach reduces energy demand, minimizes solvent waste, and enables process intensification—key factors for scaling up renewable chemical production.

The high boiling point of IPM (>300 °C) simplifies product recovery, as BTEX compounds can be isolated by fractional distillation while the solvent is readily recycled. Such a design is consistent with the principles of green chemistry and the circular economy, providing a practical alternative to fossil-based petrochemical processes.

Toward A Carbon-Neutral Future

Dr. Xuan Zou, the first author of this paper, explaind, "By coupling the selectivity of microbial metabolism with the efficiency of chemical catalysis, this platform establishes a renewable pathway to some of the most widely used building blocks in the chemical industry. Future efforts will focus on optimizing metabolic fluxes, extending the platform to additional aromatic targets, and adopting greener catalytic systems."

In addition, Distinguished Professor Sang Yup Lee noted "As the global demand for BTEX and related chemicals continues to grow, this innovation provides both a scientific and industrial foundation for reducing reliance on petroleum-based processes. It marks an important step toward lowering the carbon footprint of the fuel and chemical sectors while ensuring a sustainable supply of essential aromatic hydrocarbons."

This research was supported by the Development of Platform Technologies of Microbial Cell Factories for the Next-Generation Biorefineries Project (2022M3J5A1056117) and the Development of Advanced Synthetic Biology Source Technologies for Leading the Biomanufacturing Industry Project (RS-2024-00399424), funded by the National Research Foundation supported by the Korean Ministry of Science and ICT. This study was published in the latest issue of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.