Dave and Colleagues Publish Hypertension Research in JAMA

In a new article in JAMA, Gaurav Dave, CHER Associate Director, and colleagues (including CHER Associate Feng-Chang Lin) have published research on best methods for identifying adults patients likely to have hypertension.

The researchers compared single office blood measurements and home monitoring and offer recommendations for combining methods to clarify a patient's hypertension likelihood.

Read the article: "Does This Adult Patient Have Hypertension?The Rational Clinical Examination Systematic Review"

Abstract

Importance Office blood pressure (BP) measurements are not the most accurate method to diagnose hypertension. Home BP monitoring (HBPM) and 24-hour ambulatory BP monitoring (ABPM) are out-of-office alternatives, and ABPM is considered the reference standard for BP assessment.

Objective To systematically review the accuracy of oscillometric office and home BP measurement methods for correctly classifying adults as having hypertension, defined using ABPM.

Data Sources PubMed, Cochrane Library, Embase, ClinicalTrials.gov, and DARE databases and the American Heart Association website (from inception to April 2021) were searched, along with reference lists from retrieved articles.

Data Extraction and Synthesis Two authors independently abstracted raw data and assessed methodological quality. A third author resolved disputes as needed.

Main Outcomes and Measures Random effects summary sensitivity, specificity, and likelihood ratios (LRs) were calculated for BP measurement methods for the diagnosis of hypertension. ABPM (24-hour mean BP ≥130/80 mm Hg or mean BP while awake ≥135/85 mm Hg) was considered the reference standard.

Results A total of 12 cross-sectional studies (n = 6877) that compared conventional oscillometric office BP measurements to mean BP during 24-hour ABPM and 6 studies (n = 2049) that compared mean BP on HBPM to mean BP during 24-hour ABPM were included (range, 117-2209 participants per analysis); 2 of these studies (n = 3040) used consecutive samples. The overall prevalence of hypertension identified by 24-hour ABPM was 49% (95% CI, 39%-60%) in the pooled studies that evaluated office measures and 54% (95% CI, 39%-69%) in studies that evaluated HBPM. All included studies assessed sensitivity and specificity at the office BP threshold of 140/90 mm Hg and the home BP threshold of 135/85 mm Hg. Conventional office oscillometric measurement (1-5 measurements in a single visit with BP ≥140/90 mm Hg) had a sensitivity of 51% (95% CI, 36%-67%), specificity of 88% (95% CI, 80%-96%), positive LR of 4.2 (95% CI, 2.5-6.0), and negative LR of 0.56 (95% CI, 0.42-0.69). Mean BP with HBPM (with BP ≥135/85 mm Hg) had a sensitivity of 75% (95% CI, 65%-86%), specificity of 76% (95% CI, 65%-86%), positive LR of 3.1 (95% CI, 2.2-4.0), and negative LR of 0.33 (95% CI, 0.20-0.47). Two studies (1 with a consecutive sample) that compared unattended automated mean office BP (with BP ≥135/85 mm Hg) with 24-hour ABPM had sensitivity ranging from 48% to 51% and specificity ranging from 80% to 91%. One study that compared attended automated mean office BP (with BP ≥140/90 mm Hg) with 24-hour ABPM had a sensitivity of 87.6% (95% CI, 83%-92%) and specificity of 24.1% (95% CI, 16%-32%).

Conclusions and Relevance Office measurements of BP may not be accurate enough to rule in or rule out hypertension; HBPM may be helpful to confirm a diagnosis. When there is uncertainty around threshold values or when office and HBPM are not in agreement, 24-hour ABPM should be considered to establish the diagnosis.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.