Galactic Clash: Astronomers Spot Cosmic Joust

ESO

Astronomers have witnessed for the first time a violent cosmic collision in which one galaxy pierces another with intense radiation. Their results, published today in Nature, show that this radiation dampens the wounded galaxy's ability to form new stars. This new study combined observations from both the European Southern Observatory's Very Large Telescope (ESO's VLT) and the Atacama Large Millimeter/submillimeter Array (ALMA), revealing all the gory details of this galactic battle.

In the distant depths of the Universe, two galaxies are locked in a thrilling war. Over and over, they charge towards each other at speeds of 500 km/s on a violent collision course, only to land a glancing blow before retreating and winding up for another round. "We hence call this system the 'cosmic joust'," says study co-lead Pasquier Noterdaeme, a researcher at the Institut d'Astrophysique de Paris, France, and the French-Chilean Laboratory for Astronomy in Chile, drawing a comparison to the medieval sport. But these galactic knights aren't exactly chivalrous, and one has a very unfair advantage: it uses a quasar to pierce its opponent with a spear of radiation.

Quasars are the bright cores of some distant galaxies that are powered by supermassive black holes, releasing huge amounts of radiation. Both quasars and galaxy mergers used to be far more common, appearing more frequently in the Universe's first few billion years, so to observe them astronomers peer into the distant past with powerful telescopes. The light from this 'cosmic joust' has taken over 11 billion years to reach us, so we see it as it was when the Universe was only 18% of its current age.

"Here we see for the first time the effect of a quasar's radiation directly on the internal structure of the gas in an otherwise regular galaxy," explains study co-lead Sergei Balashev, who is a researcher at the Ioffe Institute in St Petersburg, Russia. The new observations indicate that radiation released by the quasar disrupts the clouds of gas and dust in the regular galaxy, leaving only the smallest, densest regions behind. These regions are likely too small to be capable of star formation, leaving the wounded galaxy with fewer stellar nurseries in a dramatic transformation.

But this galactic victim isn't all that is being transformed. Balashev explains: "These mergers are thought to bring huge amounts of gas to supermassive black holes residing in galaxy centres." In the cosmic joust, new reserves of fuel are brought within reach of the black hole powering the quasar. As the black hole feeds, the quasar can continue its damaging attack.

This study was conducted using ALMA and the X-shooter instrument on ESO's VLT, both located in Chile's Atacama Desert. ALMA's high resolution helped the astronomers clearly distinguish the two merging galaxies, which are so close together they looked like a single object in previous observations. With X-shooter, researchers analysed the quasar's light as it passed through the regular galaxy. This allowed the team to study how this galaxy suffered from the quasar's radiation in this cosmic fight.

Observations with larger, more powerful telescopes could reveal more about collisions like this. As Noterdaeme says, a telescope like ESO's Extremely Large Telescope "will certainly allow us to push forward a deeper study of this, and other systems, to better understand the evolution of quasars and their effect on host and nearby galaxies."

More information

This research was presented in a paper to appear in Nature titled "Quasar radiation transforms the gas in a merging companion galaxy." (doi: 10.1038/s41586-025-08966-4)

The team is composed of S. Balashev (Ioffe Institute, St Petersburg, Russia), P. Noterdaeme (Institut d'Astrophysique de Paris, Paris, France [IAP] & French-Chilean Laboratory for Astronomy [FCLA], Chile), N. Gupta (Inter-University Centre for Astronomy, Pune, India [IUCAA]), J.K. Krogager (Université Lyon I, Lyon, France & FCLA), F. Combes (Collège de France, Paris, France), S. López (Universidad de Chile [UChile]), P. Petitjean (IAP), A. Omont (IAP), R. Srianand (IUCAA), and R. Cuellar (UChile).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO's headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world's largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building "the world's biggest eye on the sky" — ESO's Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.

Links

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.