Hanyang Univ. Unveils Catalyst for Cheaper Green Hydrogen

Industrial Cooperation & research Planning team, Hanyang University ERICA

To reduce greenhouse gas emissions and combat climate change, the world urgently needs clean and renewable energy sources. Hydrogen is one such clean energy source that has zero carbon content and stores much more energy by weight than gasoline. One promising method to produce hydrogen is electrochemical water-splitting, a process that uses electricity to break down water into hydrogen and oxygen. In combination with renewable energy sources, this method offers a sustainable way to produce hydrogen and can contribute to the reduction of greenhouse gases.

Unfortunately, large-scale production of hydrogen using this method is currently unfeasible due to the need for catalysts made from expensive rare earth metals. Consequently, researchers are exploring more affordable electrocatalysts, such as those made from diverse transition metals and compounds. Among these, transition metal phosphides (TMPs) have attracted considerable attention as catalysts for the hydrogen generating side of the process, known as hydrogen evolution reaction (HER), due to their favorable properties. However, they perform poorly in the oxygen evolution reaction (OER), which reduces overall efficiency. Previous studies suggest that Boron (B)-doping into TMPs can enhance both HER and OER performance, but until now, making such materials has been a challenge.

In a recent breakthrough, a research team led by Professor Seunghyun Lee, including Mr. Dun Chan Cha, from the Hanyang University ERICA campus in South Korea, has developed a new type of tunable electrocatalyst using B-doped cobalt phosphide (CoP) nanosheets. Prof. Lee explains, "We have successfully developed cobalt phosphides-based nanomaterials by adjusting boron doping and phosphorus content using metal-organic frameworks. These materials have better performance and lower cost than conventional electrocatalysts, making them suitable for large-scale hydrogen production." Their study was published in the journal Small on March 19, 2025 .

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.