High-resolution microscopy for analysis of protein complexes

Forschungszentrum Juelich

16 November 2022 - Researchers at Forschungszentrum Jülich and the Berlin Institute of Health at Berlin's Charité Hospital have developed a novel method for determining the number of subunits within protein complexes. The method is a further development of "super-resolution" single molecule localization microscopy (SMLM), whose developers were awarded the Nobel Prize in Chemistry in 2014. The new technique allows researchers to analyze the composition of protein complexes in intact cells.

Scientific result

The new method is based on classical SMLM, but here proteins are labeled not with one, but with two different fluorescent proteins. This special feature has led to the name DCC-SMLM, while "DCC" stands for "dual-color colocalization". The degree of overlap ("colocalization") of the two color signals is used to calculate the average number of subunits per protein complex.

Social and scientific relevance

Proteins are the basic building blocks of life. They are responsible for the structure and function of cells and are involved in virtually every task of the organism. However, many proteins do not function alone, but as subunits of larger protein complexes. Knowing how many subunits make up such a protein complex is important for understanding disease-causing dysfunctions. There are a number of genetic diseases, which are associated with a disturbed assembly of protein complexes, for example defects in the assembly of ion channels in cardiac arrhythmias, epilepsies or renal dysfunction.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.