NASA Picks Two Heliophysics Missions for Development

NASA

NASA has selected one small explorer mission concept to advance toward flight design and another for an extended period of concept development.

NASA's Science Mission Directorate Science Management Council selected CINEMA (Cross-scale Investigation of Earth's Magnetotail and Aurora) to enter Phase B of development, which includes planning and design for flight and mission operations. The principal investigator for the CINEMA mission concept is Robyn Millan from Dartmouth College in Hanover, New Hampshire.

The proposed CINEMA mission aims to advance our understanding of how plasma energy flows into the Earth's magnetosphere. This highly dynamic convective flow is unpredictable - sometimes steady and sometimes explosive - driving phenomena like fast plasma jets, global electrical current systems, and spectacular auroral displays.

"The CINEMA mission will help us to research magnetic convection in Earth's magnetosphere - a critical piece of the puzzle in understanding why some space weather events are so influential, such as causing magnificent aurora displays and impacts to ground- and space-based infrastructure, and others seem to fizzle out," said Joe Westlake, director of the Heliophysics Division at NASA Headquarters in Washington. "Using multiple, multi-point measurements to improve predictions of these impacts on humans and technology across the solar system is a key strategy for the future of heliophysics research."

The CINEMA mission's constellation of nine small satellites will investigate the convective mystery using a combination of instruments - an energetic particle detector, an auroral imager, and a magnetometer - on each spacecraft in a polar low Earth orbit. By relating the energetic particles observed in this orbit to simultaneous auroral images and local magnetic field measurements, CINEMA aims to connect energetic activity in Earth's large-scale magnetic structure to the visible signatures like aurora that we see in the ionosphere. The mission has been awarded approximately $28 million to enter Phase B. The total cost of the mission, not including launch, will not exceed $182.8 million. Phase B will last 10 months, and if selected, the mission would launch no earlier than 2030.

NASA also selected the proposed CMEx (Chromospheric Magnetism Explorer) mission for an extended Phase A study. This extended phase is for the mission to assess and refine their design for potential future consideration. The principal investigator for the CMEx mission concept study is Holly Gilbert from the National Center for Atmospheric Research in Boulder, Colorado. The cost of the extended Phase A, which will last 12 months, is $2 million.

The CMEx concept is a proposed single-spacecraft mission that would use proven UV spectropolarimetric instrumentation that has been demonstrated during NASA's CLASP (Chromospheric Layer Spectropolarimeter) sub-orbital sounding rocket flight. Using this heritage hardware, CMEx would be able to diagnose lower layers of the Sun's chromosphere to understand the origin of solar eruptions and determine the magnetic sources of the solar wind.

The proposed missions completed a one-year early concept study in response to the 2022 Heliophysics Explorers Program Small-class Explorer (SMEX) Announcement of Opportunity.

"Space is becoming increasingly more important and plays a role in just about everything we do," said Asal Naseri, acting associate flight director for heliophysics at NASA Headquarters. "These mission concepts, if advanced to flight, will improve our ability to predict solar events that could harm satellites that we rely on every day and mitigate danger to astronauts near Earth, at the Moon, or Mars."

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.