Batteries Make 12Minute Charge For 800km Drive Reality

Korea Advanced Institute of Science and Technology

Korean researchers have ushered in a new era for electric vehicle (EV) battery technology by solving the long-standing dendrite problem in lithium-metal batteries. While conventional lithium-ion batteries are limited to a maximum range of 600 km, the new battery can achieve a range of 800 km on a single charge, a lifespan of over 300,000 km, and a super-fast charging time of just 12 minutes.

KAIST (President Kwang Hyung Lee) announced on the 4th of September that a research team from the Frontier Research Laboratory (FRL), a joint project between Professor Hee Tak Kim from the Department of Chemical and Biomolecular Engineering, and LG Energy Solution, has developed a "cohesion-inhibiting new liquid electrolyte" original technology that can dramatically increase the performance of lithium-metal batteries.

Lithium-metal batteries replace the graphite anode, a key component of lithium-ion batteries, with lithium metal. However, lithium metal has a technical challenge known as dendrite, which makes it difficult to secure the battery's lifespan and stability. Dendrites are tree-like lithium crystals that form on the anode surface during battery charging, negatively affecting battery performance and stability.

This dendrite phenomenon becomes more severe during rapid charging and can cause an internal short-circuit, making it very difficult to implement a lithium-metal battery that can be recharged under fast-charging conditions.

The FRL joint research team has identified that the fundamental cause of dendrite formation during rapid charging of lithium metal is due to non-uniform interfacial cohesion on the surface of the lithium metal. To solve this problem, they developed a "cohesion-inhibiting new liquid electrolyte."

The new liquid electrolyte utilizes an anion structure with a weak binding affinity to lithium ions (Li⁺), minimizing the non-uniformity of the lithium interface. This effectively suppresses dendrite growth even during rapid charging.

This technology overcomes the slow charging speed, which was a major limitation of existing lithium-metal batteries, while maintaining high energy density. It enables a long driving range and stable operation even with fast charging.

Je-Young Kim, CTO of LG Energy Solution, said, "The four years of collaboration between LG Energy Solution and KAIST through FRL are producing meaningful results. We will continue to strengthen our industry-academia collaboration to solve technical challenges and create the best results in the field of next-generation batteries."

Hee Tak Kim, Professor of Chemical and Biomolecular Engineering at KAIST, commented, "This research has become a key foundation for overcoming the technical challenges of lithium-metal batteries by understanding the interfacial structure. It has overcome the biggest barrier to the introduction of lithium-metal batteries for electric vehicles."

The study, with Dr. Hyeokjin Kwon from the KAIST Department of Chemical and Biomolecular Engineering as the first author, was published in the prestigious journal Nature Energy on September 3.

  • Nature Energy: According to the Journal Impact Factor announced by Clarivate Analytics in 2024, it ranks first among 182 energy journals and 23rd among more than 21,000 journals overall.
  • Article Title: Covariance of interphasic properties and fast chargeability of energy-dense lithium metal batteries
  • DOI: 10.1038/s41560-025-01838-1

The research was conducted through the Frontier Research Laboratory (FRL, Director Professor Hee Tak Kim), which was established in 2021 by KAIST and LG Energy Solution to develop next-generation lithium-metal battery technology.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.