An era is opening where it's possible to precisely assess the body's health status using only sweat instead of blood tests. A KAIST research team has developed a smart patch that can precisely observe internal changes through sweat when simply attached to the body. This is expected to greatly contribute to the advancement of chronic disease management and personalized healthcare technologies.
KAIST (President Kwang Hyung Lee) announced on September 7th that a research team led by Professor Ki-Hun Jeong of the Department of Bio and Brain Engineering has developed a wearable sensor that can simultaneously and in real-time analyze multiple metabolites in sweat.
Recently, research on wearable sensors that analyze metabolites in sweat to monitor the human body's precise physiological state has been actively pursued. However, conventional "label-based" sensors, which require fluorescent tags or staining, and "label-free" methods have faced difficulties in effectively collecting and controlling sweat. Because of this, there have been limitations in precisely observing metabolite changes over time in actual human subjects.
To overcome these limitations, the research team developed a thin and flexible wearable sweat patch that can be directly attached to the skin. This patch incorporates both microchannels for collecting sweat and an ultrafine nanoplasmonic structure* that label-freely analyzes sweat components using light. Thanks to this, multiple sweat metabolites can be simultaneously analyzed without the need for separate staining or labels, with just one patch application.
* Nanoplasmonic structure: An optical sensor structure where nanoscale metallic patterns interact with light, designed to sensitively detect the presence or changes in concentration of molecules in sweat.
The patch was created by combining nanophotonics technology, which manipulates light at the nanometer scale (one-hundred-thousandth the thickness of a human hair) to read molecular properties, with microfluidics technology, which precisely controls sweat in channels thinner than a hair.
In other words, within a single sweat patch, microfluidic technology enables sweat to be collected sequentially over time, allowing for the measurement of changes in various metabolites without any labeling process. Inside the patch are six to seventeen chambers (storage spaces), and sweat secreted during exercise flows along the microfluidic structures and fills each chamber in order.
The research team applied the patch to actual human subjects and succeeded in continuously tracking the changing components of sweat over time during exercise. Previously, only about two components could be checked simultaneously through a label-free approach, but in this study, they demonstrated for the first time in the world that three metabolites—uric acid, lactic acid, and tyrosine—can be quantitatively analyzed simultaneously, as well as how they change depending on exercise and diet. In particular, by using artificial intelligence analysis methods, they were able to accurately distinguish signals of desired substances even within the complex components of sweat.
Professor Ki-Hun Jeong said, "This research lays the foundation for precisely monitoring internal metabolic changes over time without blood sampling by combining nanophotonics and microfluidics technologies." He added, "In the future, it can be expanded to diverse fields such as chronic disease management, drug response tracking, environmental exposure monitoring, and the discovery of next-generation biomarkers for metabolic diseases."
This research was conducted with Jaehun Jeon, a PhD student, as the first author and was published online in Nature Communications on August 27.
- Paper Title: "All-Flexible Chronoepifluidic Nanoplasmonic Patch for Label-Free Metabolite Profiling in Sweat"
- DOI: https://doi.org/10.1038/s41467-025-63510-2
This achievement was supported by the National Research Foundation of Korea, the Ministry of Science and ICT, the Ministry of Health and Welfare, and the Ministry of Trade, Industry and Energy.