New Catalyst Boosts CO2 Electroreduction to Multicarbon Products

Chinese Academy of Sciences

Electrocatalytic CO2 reduction reaction (CO2RR), using clean electricity to convert CO2 and water into chemicals and fuels, is an effective way to simultaneously close the carbon cycle and store renewable energy.

It's difficult to generate multicarbon (C2+) products due to the multiple proton-electron transfer, the complex intermediates and the sluggish C-C coupling step during CO2RR to C2+ products, leading to low selectivity and production rate for C2+ formation.

Recently, a research team led by Prof. WANG Guoxiong, Prof. GAO Dunfeng and Prof. BAO Xinhe from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) designed a Cu-CuI composite catalyst, achieving efficient production of C2+ chemicals from CO2RR.

This study was published in Angewandte Chemie International Edition on April 10.

A Cu-CuI composite catalyst achieves highly efficient production of C2+ chemicals from electrocatalytic CO2 reduction. (Image by LI Hefei and LIU Tianfu)

The researchers designed the catalyst with abundant Cu0/Cu+ interfaces by physically mixing Cu nanoparticles and CuI powders.

Structural characterizations indicated that the Cu-CuI composite catalyst underwent significant reconstruction under CO2RR conditions, which was induced by alkaline electrolyte and applied potential.

The high-rate C2+ production over Cu-CuI was ascribed to the presence of residual Cu+ and adsorbed iodine species, which improved CO adsorption and facilitate C-C coupling.

"This work presents a new strategy for designing efficient catalysts towards high-rate CO2RR to C2+ products," said Prof. WANG.

The study was supported by the National Natural Science Foundation of China, the National Key Research and Development Program, and the Youth Innovation Promotion Association of CAS.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.