Study Reveals What Causes "Outliers" Track in Black Hole X-ray Binaries

Chinese Academy of Sciences

The black hole X-ray binaries (BHXB) are hosted by a stellar-mass black hole which accretes gas from a companion star and emits transient X-ray emission and compact radio jets.

There are strong correlations between the radio luminosity LR and the X-ray luminosity LX of the BHXBs. The correlations can mainly be divided into the "standard" track and the "outliers" track.

A research team from the Xinjiang Astronomical Observatory (XAO) of the Chinese Academy of Sciences (CAS) has investigated the contribution of the black hole spin to jet power (Blandford-Znajek jet, hereafter BZ-jet), especially for the magnetic arrested disk, and found that BZ-jet and the inner-disk coupling could account for the "outliers" track in BHXBs.

The study was published in Universe.

The researchers used the quasi-simultaneous radio and X-ray luminosity to probe the accretion of the "outlier" track in two BHXBs, H1743-322 and MAXI J1348-630. The BZ-jet and the inner-disk coupling showed good consistency with the observed radio/X-ray correlation in both sources. This suggests that the BZ-jet may explain the "outlier" tracks of both sources.

While the accretion disk of H1743-322 in outburst could be in the magnetic arrested disk state, there is a lower possibility that a magnetic arrested disk is achieved in MAXI J1348-630 due to its low jet production efficiency.

The difference in inner-disk luminosity to bolometric luminosity ratio for H1743-322 and MAXI J1348-630 was 0.191±0.081 and 0.011±0.005, respectively, which implies that MAXI J1348-630 is in a relatively low state compared with H1743-322.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.