Targeted therapies developed to reduce lung fibrosis

Low-lungs

A new treatment option for lung fibrosis is being developed by Philip Low, a Purdue University scientist, and his team. (Image provided)

WEST LAFAYETTE, Ind. – A new treatment option for lung fibrosis is being developed by Purdue University scientists. Lung fibrosis has been a concern for COVID-19 patients.

People with idiopathic pulmonary fibrosis (IPF) have a life expectancy of less than five years. Fibrotic diseases cause organ failure that lead to about 45% of all deaths in the United States. Existing therapies do little to slow progression.

Now, Philip S. Low, Purdue's Ralph C. Corley Distinguished Professor of Chemistry and Presidential Scholar for Drug Discovery, has led a team to develop two targeted therapies for people with IPF. The two different therapeutic approaches are published in Science Translational Medicine and EMBO Molecular Medicine.

"This is a horrible disease that claimed the lives of my next-door neighbor and a good friend's wife," Low said. "We developed two targeted therapies that allow us to use powerful drugs with high toxicities because we specifically deliver them to diseased cells without harming healthy ones."

The first of the Purdue team's novel targeted molecules is designed to slow fibrosis and extend life. The second IPF therapy suppresses fibrosis-inducing cytokine production.

The two therapies will be moving into human clinical trials within the next several months. The developments come as a number of people with COVID-19 or who have recovered from COVID-19 experience lung fibrosis or other related conditions.

The therapy technologies are licensed through the Purdue Research Foundation Office of Technology Commercialization

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.