Physicist and engineer Theodore "Ted" H. Geballe has died

Theodore "Ted" H. Geballe, a pioneer in the fields of applied physics, materials research and superconductivity, has died.

By Holly Alyssa MacCormick

Theodore "Ted" H. Geballe, the Theodore and Sydney Rosenberg Professor in Applied Physics, Emeritus, in the School of Humanities and Sciences (H&S) and professor emeritus of materials science and engineering in the School of Engineering, died on Oct. 24. He was 101.

A condensed matter physicist, Geballe studied superconductivity, a phenomenon whereby electrons flow without resistance, and how temperature affects the properties of semiconductors such as silicon and germanium.

His work helped define the field of applied physics, which had ripple effects across many disciplines. His studies paved the way for innovations including infrared-sensitive films in night-vision goggles, thin films in medical imaging equipment, high-purity lithium niobate crystals for lasers and the first successful high-temperature superconductors in thin-film form.

"Ted Geballe is known for a lifetime of momentous contributions to the fields of materials science and, in particular, superconductivity," said Steve Harris, the Kenneth and Barbara Oshman Professor, Emeritus, in the School of Engineering and professor emeritus of applied physics. "He was a kind, generous, caring and wonderful man, loved by all who knew him."

Developing Stanford's Department of Applied Physics

In 1967, Geballe joined Stanford as a professor in the departments of Applied Physics and Materials Science and Engineering.

Geballe's legacy includes developing and shaping Stanford's Department of Applied Physics, where he served as chair (1975-78), and the Center for Materials Research, where he served as director (1976-88). In these leadership roles he recruited top faculty, fostered interdisciplinary research and promoted the growth of independent labs at Stanford.

In 1973, Geballe recruited Malcolm "Mac" Beasley to Stanford as a professor of applied physics. Roughly a decade later, Beasley chaired the search committee that helped recruit Aharon Kapitulnik, the current Theodore and Sydney Rosenberg Professor in Applied Physics in H&S, to Stanford.

Soon after, the trio formed the Kapitulnik-Geballe-Beasley group, which focused on researching superconductivity. When IBM's Alex Müller and Georg Bednorz discovered high-temperature superconductivity in copper-oxide compounds in 1986 - a finding that earned them a Nobel Prize the following year - Geballe was among the first to recognize its significance, Kapitulnik explained. "His natural leadership and his deep knowledge in solid-state chemistry helped our Kapitulnik-Geballe-Beasley group become world leaders in this field."

"Ted helped create the field of materials physics and made it a central and contemporary subfield of all physics," Beasley said. "Being a pioneer is not an easy route, and Ted Geballe traveled it with grace."

At Stanford, Geballe's impact extended beyond his discoveries, benefiting many Stanford faculty and students. In 1990, Geballe and his wife, Frances "Sissy" Koshland Geballe, established the endowed Theodore and Frances Geballe Professorship. Over the years, they made generous gifts to support faculty, students and programs in H&S, Stanford's Graduate School of Education, the Humanities Center, the Stanford Science Fellows program and other areas around campus.

"He was renowned for his many contributions to physics and appreciated - largely anonymously - for his philanthropic activities," said Steven Kivelson, the Prabhu Goel Family Professor in H&S and professor of physics.

In 2000, the new interdisciplinary Laboratory for Advanced Materials at Stanford was named the Theodore H. Geballe Laboratory for Advanced Materials (GLAM) in his honor.

Golden years

Geballe was born Jan. 20, 1920, in San Francisco to Alice Glaser, a talented amateur pianist, and Oscar Geballe, a lawyer. At the age of 17, Geballe met Sissy and started research as an undergraduate in the lab of William Giauque, professor of chemistry at the University of California, Berkeley.

Geballe's first task was to measure the heat capacity of gold - that is, how much heat was needed to raise the temperature of 1 gram of gold by 1 degree Celsius.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.