Physicists Achieve Fractionalization Sans Magnetic Field

On the dream list of many condensed matter physicists is observing fractionalization, the phenomena of a collective state of electrons carrying a charge that is a fraction of the electron charge, without a magnetic field.

"This is not to say the electron itself can be split into pieces," said Eun-Ah Kim, professor of physics in the College of Arts and Sciences (A&S). "Rather, a group of electrons can act like it carries a deficit of charge that is only a fraction of an electron charge. Such an observation is a pinnacle of non-trivial effect strong interaction among electrons can manifest."

Achieving these states carrying a fractional charge is not only of intellectual interest, Kim said; it can be useful for new technological applications such as quantum computing.

Researchers in the Kim Group predict a way to achieve fractionalization without a magnetic field, a theory they detail in "Fractionalization in Fractional Correlated Insulating States at n ± 1/3 Filled Twisted Bilayer Graphene," published in Physical Review Letters Sept. 8. Dan Mao, a Bethe/Wilkins/Kavli Institute at Cornell (KIC) postdoctoral fellow in the Laboratory of Atomic and Solid State Physics (LASSP), is lead author. Kim and doctoral student Kevin Zhang are co-authors.

Read the full story on the College of Arts and Sciences website.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.