Scientists' New Discovery on How Champagne Bubbles Rise

Fluid mechanics researchers from Brown University and the University of Toulouse found that surfactants give the celebratory drink its stable and signature straight rise of bubbles.

PROVIDENCE, R.I. [Brown University] - Here are some scientific findings worthy of a toast: Researchers from Brown University and the University of Toulouse in France have explained why bubbles in Champagne fizz up in a straight line while bubbles in other carbonated drinks, like beer or soda, don't.

The findings, described in a new Physical Review Fluids study, are based on a series of numerical and physical experiments, including, of course, pouring out glasses of Champagne, beer, sparkling water and sparkling wine. The results not only explain what gives Champagne its line of bubbles but may hold important implications for understanding bubbly flows in the field of fluid mechanics.

"This is the type of research that I've been working out for years," said Brown engineering professor Roberto Zenit, who was one of the paper's authors. "Most people have never seen an ocean seep or an aeration tank but most of them have had a soda, a beer or a glass of Champagne. By talking about Champagne and beer, our master plan is to make people understand that fluid mechanics is important in their daily lives."

The team's goal was to investigate the stability of bubble chains in carbonated drinks. Part of the signature experience of enjoying these beverages is the tiny or large bubbles that form when the drink is poured, creating a visible chain of bubbles and fizz. Depending on the drink and its ingredients, the fluid mechanics involved are all different.

When it comes to Champagne and sparkling wine, for instance, the gas bubbles that continuously appear rise rapidly to the top in a single-file line and keep doing so for some time. This is known as a stable bubble chain. With other carbonated drinks, like beer, many bubbles veer off to the side, making it look like multiple bubbles are coming up at once. This means the bubble chain isn't stable.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.