Berkeley Team Plays Key Role in Analysis of Particle Interactions That Produce Matter From Light

Image - This image shows a reconstruction of a particle interactions event at CERN's ATLAS detector that produced W bosons from photons, particles of light. (Credit: ATLAS collaboration)

This image shows a reconstruction of a particle event at CERN's ATLAS detector that produced W bosons from photons, which are particles of light. (Credit: ATLAS collaboration)

Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) played a key role in an analysis of data from the world's largest particle collider that found proof of rare, high-energy particle interactions in which matter was produced from light.

Simone Pagan Griso, a Berkeley Lab physicist and Divisional Fellow who coordinated the efforts of the Berkeley Lab team, said his team found about 174 particle interactions that are consistent with the creation of pairs of heavy force-carrying particles called W bosons from the collision of two photons.

Photons are particles of light that carry the electromagnetic force, which is the fundamental force associated with magnetism and electricity. W bosons carry the weak force, which is associated with the fusion that powers the sun, and with a nuclear reaction called nuclear fission that takes place in nuclear power plant reactors.

From 2015 to 2018, only about one of the approximately 30 trillion proton interactions measured at the ATLAS detector at CERN's Large Hadron Collider (LHC) would produce W boson pairs from the interaction of two photons per data-taking day, Pagan Griso said.

CERN's Large Hadron Collider Creates Matter From Light

Photo - CERN's ATLAS detector.

The Large Hadron Collider (LHC) plays with Albert Einstein's famous equation, E = mc², to transform matter into energy and then back into different forms of matter. But on rare occasions, it can skip the first step and collide pure energy - in the form of electromagnetic waves.

Last year, the ATLAS experiment at CERN's LHC observed two photons, particles of light, ricocheting off one another and producing two new photons. This year, scientists have taken that research a step further and discovered photons merging and transforming into something even more interesting: W bosons, particles that carry the weak force, which governs nuclear decay.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.