Caltech Team Sets Record With 6,100-Qubit Array

Quantum computers will need large numbers of qubits to tackle challenging problems in physics, chemistry, and beyond. Unlike classical bits, qubits can exist in two states at once-a phenomenon called super position. This quirk of quantum physics gives quantum computers the potential to perform certain complex calculations better than their classical counterparts, but it also means the qubits are fragile. To compensate, researchers are building quantum computers with extra, redundant qubits to correct any errors. That is why robust quantum computers will require hundreds of thousands of qubits.

Now, in a step toward this vision, Caltech physicists have created the largest qubit array ever assembled: 6,100 neutral-atom qubits trapped in a grid by lasers. Previous arrays of this kind contained only hundreds of qubits.

This milestone comes amid a rapidly growing race to scale up quantum computers. There are several approaches in development, including those based on superconducting circuits , trapped ions, and neutral atoms, as used in the new study.

"This is an exciting moment for neutral-atom quantum computing," says Manuel Endres, professor of physics at Caltech. "We can now see a pathway to large error-corrected quantum computers. The building blocks are in place." Endres is the principal investigator of the research published today in Nature. Three Caltech graduate students led the study: Hannah Manetsch, Gyohei Nomura, and Elie Bataille.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.