Exploring Materials At Atomic Scale

Massachusetts Institute of Technology

MIT.nano has added a new X-ray diffraction (XRD) instrument to its characterization toolset, enhancing facility users' ability to analyze materials at the nanoscale. While many XRD systems exist across MIT's campus, this new instrument, the Bruker D8 Discover Plus, is unique in that it features a high-brilliance micro-focus copper X-ray source - ideal for measuring small areas of thin film samples using a large area detector.

The new system is positioned within Characterization.nano's X-ray diffraction and imaging shared experimental facility (SEF), where advanced instrumentation allows researchers to "see inside" materials at very small scales. Here, scientists and engineers can examine surfaces, layers, and internal structures without damaging the material, and create detailed 3D images to map composition and organization. The information gathered is supporting materials research for applications ranging from electronics and energy storage to health care and nanotechnology.

"The Bruker instrument is an important addition to MIT.nano that will help researchers efficiently gain insights into their materials' structure and properties," says Charlie Settens, research specialist and operations manager in the Characterization.nano X-ray diffraction and imaging SEF. "It brings high-performance diffraction capabilities to our lab, supporting everything from routine phase identification to complex thin film microstructural analysis and high-temperature studies."

What is X-ray diffraction?

When people think of X-rays, they often picture medical imaging, where dense structures like bones appear in contrast to soft tissue. X-ray diffraction takes that concept further, revealing the crystalline structure of materials by measuring the interference patterns that form when X-rays interact with atomic planes. These diffraction patterns provide detailed information about a material's crystalline phase, grain size, grain orientation, defects, and other structural properties.

XRD is essential across many fields. Civil engineers use it to analyze the components of concrete mixtures and monitor material changes over time. Materials scientists engineer new microstructures and track how atomic arrangements shift with different element combinations. Electrical engineers study crystalline thin film deposition on substrates - critical for semiconductor manufacturing. MIT.nano's new X-ray diffractometer will support all of these applications, and more.

"The addition of another high-resolution XRD will make it a lot easier to get time on these very popular tools," says Fred Tutt, PhD student in the MIT Department of Materials Science and Engineering. "The wide variety of options on the new Bruker will also make it easier for myself and my group members to take some of the more atypical measurements that aren't readily accessible with the current XRD tools."

A closer, clearer look

Replacing two older systems, the Bruker D8 Discover Plus introduces the latest in X-ray diffraction technology to MIT.nano, along with several major upgrades for the Characterization.nano facility. One key feature is the high-brilliance microfocus copper X-ray source, capable of producing intense X-rays from a small spot size - ranging from 2mm down to 200 microns.

"It's invaluable to have the flexibility to measure distinct regions of a sample with high flux and fine spatial resolution," says Jordan Cox, MIT.nano research specialist in the MIT.nano X-ray diffraction and imaging facility.

Another highlight is in-plane XRD, a technique that enables surface diffraction studies of thin films with non-uniform grain orientations.

"In-plane XRD pairs well with many thin film projects that start in the fab," says Settens. After researchers deposit thin film coatings in MIT.nano's cleanroom, they can selectively measure the top 100 nanometers of the surface, he explains.

But it's not just about collecting diffraction patterns. The new system includes a powerful software suite for advanced data analysis. Cox and Settens are now training users how to operate the diffractometer, as well as how to analyze and interpret the valuable structural data it provides.

Visit Characterization.nano

/University Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.