Fisetin Compound Slows Artery Hardening in Aging, Disease

Impact Journals LLC

"Fisetin treatment suppressed calcific marker expression and calcification of VSMCs as well as p38 MAPK phosphorylation induced by pro-calcific conditions."

BUFFALO, NY — May 6, 2025 — A new research paper was published in Aging (Aging-US) Volume 17, Issue 4 , on April 2, 2025, titled " Fisetin ameliorates vascular smooth muscle cell calcification via DUSP1-dependent p38 MAPK inhibition ."

In this study, researchers at Johannes Kepler University Linz found that fisetin, a natural substance found in fruits and vegetables, helps protect blood vessels from hardening, which is a common problem in older adults and people with kidney disease. This discovery highlights fisetin's potential to prevent vascular calcification and reduce cardiovascular damage caused by aging and chronic kidney disease.

The research, led by first author Mehdi Razazian and corresponding author Ioana Alesutan, focused on vascular calcification—a condition in which blood vessels stiffen due to calcium deposits. This process is common in aging and chronic kidney disease and increases the risk of heart attacks and strokes. Using human and mouse study models, the researchers tested fisetin's ability to prevent this calcification in vascular smooth muscle cells (VSMC), which play a key role in maintaining vessel health. Fisetin, known for its anti-inflammatory and antioxidant properties, significantly reduced calcium buildup and calcification markers under stress conditions that mimic disease.

The team also discovered that fisetin suppresses activity in a signaling pathway called p38 MAPK, which is known to promote calcification. This effect depends on a protein called DUSP1. When DUSP1 was blocked, fisetin could no longer protect the cells, showing that this protein is essential for its anti-calcification activity. The researchers confirmed fisetin's protective effects in isolated mouse arteries and in living mice treated with high doses of vitamin D, which typically increases arterial calcification.

"Mechanistically, fisetin requires the phosphatase DUSP1 to inhibit p38 MAPK in order to mediate its protective effect on VSMC calcification."

Importantly, the researchers tested fisetin under conditions similar to human disease. When VSMCs were exposed to blood serum from kidney dialysis patients—a condition known to trigger vascular calcification—fisetin again reduced calcium buildup and protected the cells. These findings suggest fisetin could be useful in countering the harmful vascular effects seen in chronic kidney disease.

This study adds to growing evidence that fisetin may protect blood vessels from aging-related damage. While more research is needed before it can be used in clinical treatments, the study highlights fisetin as a promising candidate for slowing or preventing vascular calcification. The findings could have broad implications for aging populations and individuals with kidney disease, who are at greater risk for heart problems due to vascular stiffening.

Read the full paper: DOI: https://doi.org/10.18632/aging.206233

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.