In-Line NMR Transforms Real-Life Plastics

Chinese Academy of Sciences

The accumulation of plastic waste worldwide poses a serious threat to wildlife and ecosystems. Catalytic processes that convert plastic waste into valuable chemicals and fuels offer a promising solution. However, real-life plastic waste mixtures have highly diverse composition and structural complexity, and accurate identification of the components within the mixtures is a prerequisite for their effective separation and recycling.

In a study published in Nature, Prof. XU Shutao from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences, in collaboration with the team of Prof. WANG Meng and Prof. MA Ding from Peking University, developed a solid-state NMR technology to characterize the separation and recycling processes of real-life plastic waste mixtures.

Solid-state nuclear magnetic resonance (NMR) spectroscopy has the advantage of directly analyzing insoluble samples, making it a powerful tool for studying complex polymer systems. In this study, the researchers utilized an innovative solid-state NMR method:1H-13C Frequency Switched Lee Goldburg Heteronuclear Correlation (FSLG-HETCOR) NMR.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.