Kompetensportalen, Lucat, Lupin, Lubas and LUCRIS. Those are the names of some of Lund University's administrative systems. They are now also the names of five new bacteriophages that have recently been discovered in the ponds of Lund University's Botanical Gardens.
Bacteriophages - often abbreviated to phages - are viruses that attack bacteria. Phages are astonishingly effective assassins - these viruses wipe out 20 percent of all bacteria on Earth every day. The ongoing battle with bacteria has made phages humanity's natural ally when it comes to treating bacterial infections The growing urgency of combating antibiotic resistance has made phage research - particularly the development of phage-basered therapies - more relevant than ever.
"Bacteria are under constant attack from phages. Phages are picky about their prey - different phages infect different species of bacteria, sometimes only a specific strain. The challenge lies in assembling the right "collection" of phages, each one a precision weapon calibrated to infect and obliterate only the intended strain of bacteria," says Vasili Hauryliuk, professor of medical biochemistry at Lund University.
Finding the right bacteriophage for the right bacterial strain is a major challenge. Natural bacterial strains are also constantly changing, thanks to mutations among other things. This means that a phage that has previously been effective may become ineffective.
At Lund University, Sweden's first international course in phage biology has been completed. Doctoral students from across Europe came to attend lectures by leading phage researchers, exchange ideas, and, of course, to hunt for new phages and find the right precision weapons with which to attack various bacteria. Phages thrive wherever bacteria are found, which often means ponds and watercourses that are rich in organic material. The ponds in Lund University's Botanical Gardens - both indoors and out - therefore proved to be perfect locations for phage fishing. However, to catch phages requires the right "bait", which means the right bacterial strain to attract the virus.
"Collecting phages is like fishing in that you never know what you will end up with on the hook. Since it is fairly simple to isolate bacteriophages from ponds - and Lund has several - we combined research and education and went fishing for phages," says Marcus Johansson, associate researcher at Lund University and one of the course coordinators. He is also last author on the study.
The researchers used a strain of E. coli, a common gut bacterium that can become a lethal pathogen. When a laboratory E. coli strain is grown in flasks without shaking, it becomes motile by developing a so-called flagellum - a "tail" that the bacterium uses to propel itself and explore the environment. Some phages specifically recognise the "tail" to infect. Using a motile E. coli strain, researchers managed to catch a new "tail-loving" phage from the Botanical Gardens' ponds. Remarkably, this phage can kill not only E. coli, but also another motile bacterial species -Salmonella.
"One fun part about phage fishing is that you can name the new viruses - and phage names can be pretty weird! We wanted our phages to have names that were linked to Lund University and the tail-loving phage was named "Kompetensportalen". We named two other phages Lucat and Lupin, after the University's staff directory and its purchasing and invoicing tool, respectively" explains Vasili Hauryliuk.
The total of five newly-discovered bacteriophages from the Botanical Gardens are now serving as ambassadors for Lund University in the world of international phage research. The phage, "Kompetensportalen" has quickly attracted attention and phage researchers from outside Sweden have already expressed an interest in it.
"The diversity of bacteriophages discovered in the Botanical Gardens' ponds is particularly fascinating as the Gardens' greenhouses are currently being renovated. It underlines the great diversity in biology and our role as a centre for education and research. It is exciting to discover that our ponds are home to more than just plants," says Allison Perrigo, director of Lund University's Botanical Gardens.