Antiferromagnetic Material’s Giant Stride Towards Application

The quest for high throughput intelligent computing paradigms – for big data and artificial intelligence – and the ever-increasing volume of digital information has led to an intensified demand for high-speed and low-power consuming next-generation electronic devices. The “forgotten” world of antiferromagnets (AFM), a class of magnetic materials, offers promise in future electronic device development and complements present-day ferromagnet-based spintronic technologies (Fig. 1).

Fig.1: A schematic diagram of information storage using conventional ferromagnet (FM)-based spintronic devices (left) and the proposed antiferromagnets (AFMs)-based devices (right) (the arrows indicate magnetic moments). In FM-based devices (left), bits of information (state “1” or “0”) are encoded in the orientation (red/up or blue/down) of the moments. The compensated structure of AFMs (right) entails unique advantages while posing significant hurdles at the same time. ©︎Samik DuttaGupta and Shunsuke Fukami

Formidable challenges for AFM-based functional spintronic device development are high-speed electrical manipulation (recording), detection (retrieval), and ensuring the stability of the recorded information – all in a semiconductor industry-friendly material system.

/Public Release. This material comes from the originating organization and may be of a point-in-time nature, edited for clarity, style and length. View in full here.