The growing global demand for clean energy and rising concerns over climate change have intensified the search for sustainable alternatives. Hydrogen emerges as a promising solution due to its high energy density and zero-carbon emissions. Among production methods, alkaline water electrolysis is efficient and environmentally friendly; however, its dependence on freshwater limits large-scale implementation. Seawater electrolysis offers a practical alternative by tapping Earth's abundant water resources but contains high chloride concentrations that accelerate catalyst corrosion and reduce efficiency, posing a significant challenge for sustainable hydrogen generation.
To address this problem, a researcher team led by Assistant Professor Haeseong Jang, Department of Advanced Materials Engineering, Chung-Ang University, and Professor Xien Liu, Department of Chemical Engineering, Qingdao University of Science and Technology, aimed to develop a robust and cost-effective electrocatalyst capable of high-performance hydrogen evolution in saline environments. Dr. Jang shares the motivation behind this study, "Alkaline water electrolysis, though economically attractive due to the use of inexpensive non-precious metal catalysts, faces significant challenges, including slow hydrogen evolution reaction (HER) kinetics and corrosion problems in real-world environments that hinder commercialization. Our research is driven by the mission to develop economically viable and stable clean hydrogen production technology to overcome these critical barriers." The findings of their study were made available online in Advanced Functional Materials on August 7, 2025.
The team designed a ruthenium (Ru)-based catalyst that balances activity, stability, and chloride-corrosion resistance, overcoming limitations of conventional platinum or Ru catalysts in alkaline and seawater electrolysis. They employed a g-C3N4