KAIST Ties Early Epigenetics to Brain Inflammation

Korea Advanced Institute of Science and Technology

<(From left) Professor Won-Suk Chung, Ph.D. Ph.D candidate Hyeonji Park Dr. Seongwan Park, Professor Inkyung Jung>

Why do some people remain healthy through childhood yet become more vulnerable to brain disorders such as dementia later in life? A KAIST (President Kwang Hyung Lee) -led team has uncovered a key part of the answer: a developmental 'switch' in astrocytes—the brain's most abundant support cells that shapes how strongly the brain's immune system reacts in adulthood. The study identifies a gene, NR3C1 (encoding the glucocorticoid receptor), as a master regulator of this switch and shows how early-life epigenetic 'memory' can predispose the adult brain to excessive inflammation.

The work was carried out by a joint team led by Professor Inkyung Jung (Department of Biological Sciences, KAIST) and Associate Director Won-Suk Chung (Center for Vascular Research, Institute for Basic Science; Professor, KAIST Biological Sciences). Using mouse models, the researchers mapped gene-regulatory programs across multiple stages of astrocyte development and found that NR3C1 acts during a brief early-postnatal window to enforce long-term immune restraint.

To build this map, the team combined state-of-the-art 3D epigenome profiling with RNA sequencing and chromatin accessibility analyses, capturing how DNA folds and which regulatory elements contact target genes. They identified 55 stage-specific transcription factors that guide astrocyte maturation; among them, NR3C1 emerged as the critical 'switch' in early life. Notably, deleting NR3C1 in astrocytes did not disrupt normal development. However, when the adult mice were challenged with an autoimmune model of multiple sclerosis, animals lacking astrocytic NR3C1 mounted exaggerated inflammatory responses and developed more severe disease.

Mechanistically, the study shows that early loss of NR3C1 epigenetically primes immune genes - keeping their regulatory elements open and ready - so that later in life these genes respond too strongly to inflammatory cues. In effect, NR3C1 serves as an early 'brake' that prevents over-activation of astrocyte immune programs in adulthood.

"This is the first demonstration that astrocyte immune functions are governed by epigenetic memory," said Professor Won-Suk Chung. "Our findings offer new clues to the origins of degenerative brain disorders, including Alzheimer's disease."

"We reveal a temporal regulatory window in astrocyte development that can set the stage for disease vulnerability in adulthood," added Professor Inkyung Jung. "Understanding the 3D genome logic behind these programs could open paths to therapies for immune-related brain disorders such as multiple sclerosis."

Mxi1 are overexpressed, triggering inflammatory responses. This clearly demonstrates that NR3C1 plays an essential role in maintaining immune homeostasis by stabilizing three-dimensional gene regulatory mechanisms.>

The results of this study were published online on September 22 in the international journal Nature Communications (IF 15.7), with Dr. Seongwan Park and PhD student Hyeonji Park of KAIST's Department of Biological Sciences as co-first authors.

※ Paper title: "NR3C1-mediated epigenetic regulation suppresses astrocytic immune responses in mice," DOI: https://www.nature.com/articles/s41467-025-64088-5

In addition, on September 17, the journal published a commentary article introducing this research: https://www.nature.com/articles/s41467-025-64102-w

This research was supported by the Suh Kyungbae Science Foundation, the Ministry of Health and Welfare, the Ministry of Science and ICT, and IBS.

Glossary - Epigenetic priming: preparing genes for rapid future activation by altering chromatin without changing DNA sequence

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.