Prostate Cancer Cells Store Fat to Survive Treatment

Impact Journals LLC

"[…] manipulating LD dynamics represents a promising strategy to overcome hypoxia-induced resistance to ferroptosis and improve the success of PCa treatment."

BUFFALO, NY – July 14, 2025 – A new research paper was published in Volume 16 of Oncotarget on June 25, 2025, titled " Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer ."

In this study, researchers led by Shailender S. Chauhan and Noel A. Warfel from the University of Arizona discovered that prostate cancer cells survive treatment by storing fats in tiny cellular compartments when oxygen levels are low. This process makes the cancer cells less vulnerable to a type of cell death known as ferroptosis. The findings provide new insight into why prostate tumors often resist therapies and suggest potential strategies to improve treatment outcomes.

This study focused on ferroptosis, a form of programmed cell death that relies on iron and lipid oxidation to destroy cancer cells. Researchers tested prostate cancer cells under normal and low oxygen conditions and found that hypoxia, or reduced oxygen levels, allowed cancer cells to build up lipid droplets (LD). These structures act as storage units for fats, shielding cancer cells from oxidative damage and preventing ferroptosis from occurring.

The researchers found that this adaptation of prostate cancer cells made them less sensitive to ferroptosis-inducing drugs like Erastin and RSL3, even when these drugs were combined for a stronger effect. The team also reported that hypoxia caused significant changes in lipid metabolism, decreasing the availability of specific fatty acids that normally promote ferroptosis.

"Transcriptomic analysis revealed that hypoxia significantly reduced the expression of genes related to incorporating polyunsaturated fatty acids into phospholipids (ACSL4, LPCAT3), and parallel lipidomic analysis demonstrated that hypoxia significantly decreased the levels of the ferroptosis-prone lipid class, phosphatidylethanolamine (PE) and increased production of neutral lipid species, cholesteryl ester (ChE (22:5)) and triglycerides (TG(48:1), TG:(50:4), and TG(58:4))."

This research highlights the importance of the tumor microenvironment, particularly oxygen levels, in shaping how cancer cells respond to therapy. By altering their metabolism and storing lipids, prostate tumors may evade treatments designed to trigger ferroptosis. These findings underscore the need to develop new strategies targeting LD dynamics or lipid metabolism to overcome this resistance.

Understanding how prostate cancer (Pca) adapts to survive in hypoxic conditions offers a potential avenue for improving therapies. For example, preventing lipid accumulation in cancer cells or releasing stored fats may restore their sensitivity to ferroptosis and improve the effectiveness of current therapies. This approach could have broader implications for treating other solid tumors that share similar metabolic features.

Continue reading: DOI: https://doi.org/10.18632/oncotarget.28750

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.