With superconducting diodes, scholars advance work toward ultra-efficient quantum electronic devices

A research team including Brown University faculty and students created a superconducting diode without a magnetic field in multi-layer graphene, a development that could for the basis for future "lossless" electronics.

PROVIDENCE, R.I. [Brown University] - Superconductors - materials that conduct electricity with zero loss of energy - have been well-understood since the development of what's called the BCS theory in the mid-1950s. However, the recent development of superconducting diodes using twisted, multi-layer graphene has made understanding how unconventional superconductors function an important new topic of fundamental research.

Now, an international research group that includes Brown Assistant Professor of Physics Jia Li has reached a critical milestone: Using graphene, a material with unique properties, they've demonstrated a prominent superconducting diode effect in a single two-dimensional superconductor. They reported their findings in a study in Nature Physics.

A superconducting diode effect occurs when there is a magnitude of current in which a material behaves like a superconductor in one direction of electricity flow and like a resistor in the opposite. In contrast to a conventional diode, a superconducting diode exhibits zero resistance and thus no energy loss in the forward direction.

The researchers' new development could form the basis for ultra-efficient lossless quantum electronic devices.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.