Benzene Detected in Planet-Forming Disk Around Star

An international team of astronomers including Leiden professor Ewine van Dishoeck has observed the benzene molecule (C6H6) in a planet-forming disk around a young star for the first time. The observations tell us more about the forming of planets in this disc, like our own Earth. The scientists publish their findings Thursday evening in the journal Nature Astronomy.

The researchers studied the young, small star J160532 (one tenth of the mass of our sun) some 500 light years away from us towards the constellation Scorpio. Around such small young stars, many rocky planets similar to Earth form, in disks made of gas and dust. Until now, it has been difficult to study molecules in the warm inner part of these disks where the majority of planets form due to the limited sensitivity and spectral resolution of previous observatories.

For their research, the scientists used data from the MIRI spectrometer aboard the James Webb Space Telescope. MIRI can see right through dust clouds and is particularly well suited to measure hot gas in inner disks. The heart of the MIRI spectrometer was designed and built by the Netherlands Research School for Astronomy (NOVA).

'This is exactly the kind of science the MIRI spectrometer was designed for,' says Ewine van Dishoeck (Leiden University), who has been involved in building Webb and the MIRI instrument from the beginning. 'The spectra contain a wealth of data that tell us something about the chemical and physical composition of planet-forming disks.'

The MIRI spectrum of J160532. The emission lines of benzene, diacetylene and carbon dioxide can be seen as narrow peaks in the spectrum. Acetylene (C2H2) is so abundant that it gives broad humps in the spectrum. Interestingly, there is no water in the disk. (c) JWST/MIRI/Tabone et al.

Lots of carbon gas, little oxygen

Besides the first ever observation of benzene in a planet-forming disk, the researchers also saw the hydrocarbon diacetylene (C4H2) for the first time, and an unusually large amount of acetylene gas (C2H2), a very reactive hydrocarbon. Strikingly, there is very little water and carbon dioxide in this disc. Those oxygen-rich compounds are often found in other dust discs, though. Identifying these molecules required close collaboration with chemists who measure the spectra (the chemical fingerprints) in the laboratory.

The researchers suspect that the benzene and (di-)acetylene are released in the disc following the destruction of carbon-rich dust grains by the active young star. The dust grains that remain would contain silicates with relatively little carbon. In a later phase, the low-carbon grains clump together into larger chunks. These eventually become rocky planets like Earth. This scenario may explain why our own Earth is so poor in carbon.

Fifty discs to go

Meanwhile, the researchers are working out the data from over 30 other dust discs around young stars and data on 20 more discs are expected this year. In doing so, they are expected to discover other molecules and gain more knowledge about the formation of planets around stars from the very smallest ones to those that are 2-3 times the mass of our sun.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.