Cervical precancer identified with fluorescence, in a step toward bedside detection

Metabolic and structural changes in the cells are detected by their intrinsic fluorescence, a property that can be measured non-invasively and without contrast agents.
Sections of healthy and precancerous cervical epithelial tissue
Optical fluorescence scans of excised healthy and precancerous cervical epithelial tissue. In these images, the redox ratio of coenzymes reflect cellular metabolism and show up in distinctive color hues, which can vary by depth (most superficial sections

MEDFORD/SOMERVILLE and BOSTON, Mass. (May 19, 2020) – A team of researchers at Tufts University’s School of Engineering and its School of Medicine, and physicians at Tufts Medical Center have developed a method using fluorescence to detect pre-cancerous metabolic and physical changes in epithelial cells lining the cervix. According to the researchers, the new imaging method opens the door to a non-invasive, early-stage bedside diagnostic. As described today in Cell Reports Medicine, the method can visualize both metabolic and structural changes within individual cells and at different depths of the epithelial tissue near the surface, while also being able to scan the surface in a completely non-destructive manner. The combined information provides a highly accurate assessment of metabolic states in tissues, often the first changes that occur in the transition to cancer.

The imaging method developed by the team looks at the intrinsic fluorescence of the cell, so it requires no contrast agents or radioactive tracers and can be observed using an optical microscope that shines light on the area examined and looks for a fluorescent “glow” at different wavelengths. Unlike biopsies, it requires no painful surgical incisions, and unlike PET imaging used for detecting metabolic signatures of cancer, the fluorescence imaging method provides much higher resolution for surface tissues, does not require intravenous injection of contrast agents, and could theoretically be applied at bedside as part of a routine regimen of monitoring.

Early detection is the most critical factor in the successful treatment and prevention of epithelial cancers, which include both skin and cervical cancers. Just as high risk individuals can reduce the risk of developing skin cancer with regular visits to the dermatologist to scan for pre-cancerous lesions, cervical cancer could theoretically benefit from a similar strategy. However, the standard for diagnostics — colposcopy followed by acetic acid application and selection of the worst appearing site for biopsy – is expensive, often requires multiple biopsies to obtain sufficient sensitivity in detection, and can be uncomfortable or even painful for patients. Previous studies have shown that the discomfort and inconvenience of the procedure has kept many women from keeping up with monitoring their condition.

/Public Release. View in full here.