Four at UW Medicine earn High-Risk, High-Reward awards

Getty Images
The NIH Common Fund-supported research at UW Medicine hopes to make advances in virus treatment, genetic testing, mitochondrial diseases and immunotherapy

Four faculty members at the University of Washington School of Medicine have received 2020 High-Risk, High Reward research grants, the National Institutes of Health announced today, Oct. 6.

These 2020 NIH Director's Awards recognize extraordinary creativity in tackling difficult problems in biomedical research. The UW Medicine scientists will be exploring bat immunity to viruses lethal in humans, how mitochondrial are perturbed in common disorders, how problems in gene regulation lead to disease, and cellular sensors that keep immune cells from attacking the body' own cells.

According to the NIH announcement, this grant program catalyzes scientific discovery by supporting proposals that pursue trailblazing ideas with transformational potential. These proposals might have struggled in traditional grant reviews due to the risk inherent in their high aims.

"The breadth of innovative science put forth by the 2020 cohort of early career and seasoned investigators is impressive and inspiring," said NIH Director Francis S. Collins, in a press release. "I am confident that their work will propel biomedical and behavioral research and lead to improvements in human health."

This year, all four categories of the High-Risk, High Rewards are represented among the UW School of Medicine recipients, including two given to researchers in the early stages of their careers.

The recipients, awards and research topics are:

David Veesler, associate professor of biochemistry, has received an NIH Director's Pioneer Award, for his outstanding record of groundbreaking work on major scientific challenges. He has studied the infection machinery of coronaviruses for several years. In this new project, his lab will look at bat immune responses that permit these flying mammals to carry, without ill effect, numerous viruses that are lethal to humans. The long co-evolution of bats and their viruses likely led to highly specific, protective immunity proteins in their body fluids. These virus- taming substances will be explored at the molecular level. The bat antibodies could be, the researchers note, an untapped source of ideas for virus inhibitors. The bats' viral immunity successes may illustrate ways vaccines and other therapeutics might be designed to ward off emerging or not-yet-discovered bat-to-human pathogens. This effort might improve current pandemic response and foster future preparedness against bat-transmitted diseases.

Yasemin Sancak, assistant professor of pharmacology, is a recipient of a New Innovator Award. Sancak's lab is interested in how mitochondrial dysfunctions contribute to the effects of aging and to common diseases such as cancer, heart problems, neurological degeneration, and diabetes. In this project, her lab will look at how mitochondria are regulated through interactions with other, different organelles in cells. To overcome some of the technical obstacles to studying these interactions, Sancak is developing a way of tagging and rapidly isolating mitochondria based on their location within a cell and their organelle or plasma membrane interactions. This method would be conducted in healthy cell lines and in cellular models of mitochondrial diseases. As part of a comprehensive biochemical investigation, Sancak's lab will first look at the proteins and metabolites that are generated when the mitochondria are close to the plasma membrane or the organelles in question. Then they will see if specific metabolites or proteins appear to regulate mitochondrial functions. They will also try to determine which interactions are perturbed in diseased cells, and how this information might suggest therapeutic interventions.

Daniel B. Stetson. associate professor of immunology, will be part of a multi-institutional Transformative Research Award. The group of scientists will uncover innate immune system checkpoints that keep the body from attacking its own cells. Such checkpoints do make exceptions and permit the death of cells that become cancerous. It would be easy during a viral infection to confuse whether two-stranded RNA comes from a virus or from one's own cells. That is why animals and humans have a biochemical tag to mark their cells' two-stranded RNA. This helps avoid immune response mistakes. Learning more about how the immune system guards the body from its own defensive arsenal may help researchers identify new strategies for cancer that overcome immune system roadblocks to treatment. Brenda Bass from the University of Utah will head this collaborative project. Visit the Stetson lab website.

The NIH research grant numbers are: DP1 AI158186-01 (Veesler), DP2 ES032761-01 (Sancak), DP5 OD029630-01 (Stergachis), R01 CA260414-01 (Stetson, Basa, and others). The program is supported by the NIH Common Fund.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.