Researchers look to control organ function through new computational model

The human body’s nervous system is complex. Consisting of the brain, spinal cord and sensory organs, the nervous system acts as the communicator of the body, receiving information, deciding what information to deliver and sending messages to organs to take action. At times, these messages may not be delivered properly due to damaged nerves, causing organ dysfunction.

Understanding nerve activity is something Zachary Danziger, assistant professor at the School of Biomedical, Materials and Mechanical Engineering within the College of Engineering & Computing, has been researching for years. Focusing on the nerves located in the urinary tract, Danziger is looking to improve the efficiency of stimulation technology to restore bladder function and ultimately improve people’s lives.

Through the National Institutes of Health’s (NIH) Stimulating Peripheral Activity to Relieve Conditions (SPARC) program, Danziger and researchers from other institutions across the nation have received more than $1 million in funds. Their goal is to create a computational model using machine learning that can guide the development of new therapeutic electrical signal stimulations and effectively identify a nerve that can control the bladder.

graphic.jpg

Bladder dysfunction, or urinary incontinence, is more common than most think. It affects about 50 percent of women and 25 percent of men. It is also seen more often in women over the age of 50 or women who’ve recently given birth.

“The problem with the nervous system is that it is immensely complicated. Current experiments are more of a trial and error. We want to find a way to be more efficient and reduce animal testing,” said Danziger, principal investigator on the project. “Take, for example, mechanical engineering. Engineers don’t build multiple buildings and see which one stands. We want to be able to know exactly which nerve to use to get an organ to do what we want.”

Danziger adds that the mathematics of the nervous system doesn’t make it any easier.

“We don’t have these fundamental principles to look to. The nervous system is difficult to predict because of its many complex interactions. If we target a specific nerve, we don’t know what else can happen or how other nerves might react.”

The multi-institutional team is using machine learning to connect individual mathematical equations developed by scientists. During the first year of the research, the team will take an inventory of existing mathematical equations that link to physiology and the lower urinary tract system.

Taking these equations and developing algorithms to allow computers to predict how the lower urinary tract system will function when external stimulation is introduced will be managed by Giovanna Guidoboni, professor of electrical engineering and computer science and professor of mathematics at the University of Missouri. Professors of electrical and computer engineering Deniz Erdogmus and Sumientra Rampersad from Northeastern University will contribute machine learning and computational modeling expertise to the joint effort.

“The possibility to stimulate the neurological system from the outside would allow a person to regain control of that activity, which would really improve the quality of life for many people. That comes after you gain the understanding of what to do. Our project is aimed at trying to provide this understanding,” said Guidoboni.

At the end of the two years, the team will have developed a new modeling framework—which, through biophysics models and machine learning, can emulate an entire organ system.

The interdisciplinary team is composed of mathematicians, computer scientists, engineers and experimentalists from various institutions: Danziger at FIU; Guidoboni from the University of Missouri; Erdogmus and Rampersad from Northeastern University; John Yin, professor of chemical and biological engineering at the University of Wisconsin-Madison; and Elie Alhajjar at the United States Military Academy.

All involved met virtually through NIH’s 2020 SPARC Ideas Lab, a four-day conference inviting individuals to bring their innovative ideas to the table when it comes to transforming the future of bioelectronic medicine.

“An exciting and unprecedented feature is that our collaboration was conceived and is being carried out entirely online,” said Yin. “We are part of a big experiment that points toward the future of collaborative science and engineering.”

Danziger is the director of FIU’s Applied Neural Interfaces Lab and is recruiting graduate students and post-doctoral researchers to participate in the research. In the near future, there may be a student exchange opportunity among all institutions involved in the project.

dr.zachary_danziger.jpg
Assistant Professor Zachary Danziger

/Public Release. The material in this public release comes from the originating organization and may be of a point-in-time nature, edited for clarity, style and length. View in full here.