In the search for habitable exoplanets, atmospheric conditions play a key role in determining if a planet can sustain liquid water. Suitable candidates often sit in the "Goldilocks zone," a distance that is neither too close nor too far from their host star to allow liquid water. With the launch of the James Webb Space Telescope (JWST), astronomers are collecting improved observations of exoplanet atmospheres that will help determine which exoplanets are good candidates for further study.
In an open-access paper published today in The Astrophysical Journal Letters , astronomers used JWST to take a closer look at the atmosphere of the exoplanet TRAPPIST-1e, located in the TRAPPIST-1 system. While they haven't found definitive proof of what it is made of - or if it even has an atmosphere - they were able to rule out several possibilities.
"The idea is: If we assume that the planet is not airless, can we constrain different atmospheric scenarios? Do those scenarios still allow for liquid water at the surface?" says Ana Glidden, a postdoc in the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and the MIT Kavli Institute for Astrophysics and Space Research, and the first author on the paper. The answers they found were yes.
The new data rule out a hydrogen-dominated atmosphere, and place tighter constraints on other atmospheric conditions that are commonly created through secondary-generation, such as volcanic eruptions and outgassing from the planet's interior. The data were consistent enough to still allow for the possibility of a surface ocean.
"TRAPPIST-1e remains one of our most compelling habitable-zone planets, and these new results take us a step closer to knowing what kind of world it is," says Sara Seager, Class of 1941 Professor of Planetary Science at MIT and co-author on the study. "The evidence pointing away from Venus- and Mars-like atmospheres sharpens our focus on the scenarios still in play."
The study's co-authors also include collaborators from the University of Arizona, Johns Hopkins University, University of Michigan, the Space Telescope Science Institute, and members of the JWST-TST DREAMS Team .
Improved observations
Exoplanet atmospheres are studied using a technique called transmission spectroscopy. When a planet passes in front of its host star, the starlight is filtered through the planet's atmosphere. Astronomers can determine which molecules are present in the atmosphere by seeing how the light changes at different wavelengths.
"Each molecule has a spectral fingerprint. You can compare your observations with those fingerprints to suss out which molecules may be present," says Glidden.
JWST has a larger wavelength coverage and higher spectral resolution than its predecessor, the Hubble Space Telescope, which makes it possible to observe molecules like carbon dioxide and methane that are more commonly found in our own solar system. However, the improved observations have also highlighted the problem of stellar contamination, where changes in the host star's temperature due to things like sunspots and solar flares make it difficult to interpret data.
"Stellar activity strongly interferes with the planetary interpretation of the data because we can only observe a potential atmosphere through starlight," says Glidden. "It is challenging to separate out which signals come from the star versus from the planet itself."
Ruling out atmospheric conditions
The researchers used a novel approach to mitigate for stellar activity and, as a result, "any signal you can see varying visit-to-visit is most likely from the star, while anything that's consistent between the visits is most likely the planet," says Glidden.
The researchers were then able to compare the results to several different possible atmospheric scenarios. They found that carbon dioxide-rich atmospheres, like those of Mars and Venus, are unlikely, while a warm, nitrogen-rich atmosphere similar to Saturn's moon Titan remains possible. The evidence, however, is too weak to determine if any atmosphere was present, let alone detecting a specific type of gas. Additional, ongoing observations that are already in the works will help to narrow down the possibilities.
"With our initial observations, we have showcased the gains made with JWST. Our follow-up program will help us to further refine our understanding of one of our best habitable-zone planets," says Glidden.